scholarly journals Regenerative Cardiovascular Therapies: Stem Cells and Beyond

2019 ◽  
Vol 20 (6) ◽  
pp. 1420 ◽  
Author(s):  
Bernhard Wernly ◽  
Moritz Mirna ◽  
Richard Rezar ◽  
Christine Prodinger ◽  
Christian Jung ◽  
...  

Although reperfusion therapy has improved outcomes, acute myocardial infarction (AMI) is still associated with both significant mortality and morbidity. Once irreversible myocardial cell death due to ischemia and reperfusion sets in, scarring leads to reduction in left ventricular function and subsequent heart failure. Regenerative cardiovascular medicine experienced a boost in the early 2000s when regenerative effects of bone marrow stem cells in a murine model of AMI were described. Translation from an animal model to stem cell application in a clinical setting was rapid and the first large trials in humans suffering from AMI were conducted. However, high initial hopes were early shattered by inconsistent results of randomized clinical trials in patients suffering from AMI treated with stem cells. Hence, we provide an overview of both basic science and clinical trials carried out in regenerative cardiovascular therapies. Possible pitfalls in specific cell processing techniques and trial design are discussed as these factors influence both basic science and clinical outcomes. We address possible solutions. Alternative mechanisms and explanations for effects seen in both basic science and some clinical trials are discussed here, with special emphasis on paracrine mechanisms via growth factors, exosomes, and microRNAs. Based on these findings, we propose an outlook in which stem cell therapy, or therapeutic effects associated with stem cell therapy, such as paracrine mechanisms, might play an important role in the future. Optimizing stem cell processing and a better understanding of paracrine signaling as well as its effect on cardioprotection and remodeling after AMI might improve not only AMI research, but also our patients’ outcomes.

Author(s):  
Paul Bates

Purpose: Adult stem cells are among the new methods of approaching the treatment of myocardial tissue damage. The purpose of this review is to clarify misconceptions about stem cell therapy efficacy in clinical trials and provide a thorough understanding of adult stem cells as a future treatment for patients with myocardial infarction. Methods: A comprehensive review of literature was performed analyzing and comparing 12 clinical trials involving the treatment of patients with acute and chronic myocardial infarction. Results: Stem cell treatments carry an excellent safety profile with the ease of one-time dosing, and have shown dramatic functional improvements while reducing the recurrence of myocardial infarction and enhancing quality of life. Important changes with adult stem cell treatments include 1) formation of new cardiomyocytes, 2) sufficient and sustained improvements in cardiac output, 3) increased myocardial contractility, 4) decreased infarct zone diameter, 5) increased left ventricular function, 6) increased exercise ability, and 7) increased coronary perfusion secondary to neovascularization. Conclusion: At this time, based on the current clinical evidence, adult stem cell therapy is in a position to be considered as an optional treatment for patients with acute or chronic myocardial infarction. Adult stem cell therapy is still in experimental stages of development and the continued clinical involvement will provide more evidence to the therapeutic effects of the treatment.


2020 ◽  
Vol 21 (19) ◽  
pp. 7380 ◽  
Author(s):  
Masahito Kawabori ◽  
Hideo Shichinohe ◽  
Satoshi Kuroda ◽  
Kiyohiro Houkin

Despite recent developments in innovative treatment strategies, stroke remains one of the leading causes of death and disability worldwide. Stem cell therapy is currently attracting much attention due to its potential for exerting significant therapeutic effects on stroke patients. Various types of cells, including bone marrow mononuclear cells, bone marrow/adipose-derived stem/stromal cells, umbilical cord blood cells, neural stem cells, and olfactory ensheathing cells have enhanced neurological outcomes in animal stroke models. These stem cells have also been tested via clinical trials involving stroke patients. In this article, the authors review potential molecular mechanisms underlying neural recovery associated with stem cell treatment, as well as recent advances in stem cell therapy, with particular reference to clinical trials and future prospects for such therapy in treating stroke.


2020 ◽  
Vol 22 (3) ◽  
pp. 286-305 ◽  
Author(s):  
Shuai Zhang ◽  
Brittany Bolduc Lachance ◽  
Bilal Moiz ◽  
Xiaofeng Jia

Stem cells have been used for regenerative and therapeutic purposes in a variety of diseases. In ischemic brain injury, preclinical studies have been promising, but have failed to translate results to clinical trials. We aimed to explore the application of stem cells after ischemic brain injury by focusing on topics such as delivery routes, regeneration efficacy, adverse effects, and in vivo potential optimization. PUBMED and Web of Science were searched for the latest studies examining stem cell therapy applications in ischemic brain injury, particularly after stroke or cardiac arrest, with a focus on studies addressing delivery optimization, stem cell type comparison, or translational aspects. Other studies providing further understanding or potential contributions to ischemic brain injury treatment were also included. Multiple stem cell types have been investigated in ischemic brain injury treatment, with a strong literature base in the treatment of stroke. Studies have suggested that stem cell administration after ischemic brain injury exerts paracrine effects via growth factor release, blood-brain barrier integrity protection, and allows for exosome release for ischemic injury mitigation. To date, limited studies have investigated these therapeutic mechanisms in the setting of cardiac arrest or therapeutic hypothermia. Several delivery modalities are available, each with limitations regarding invasiveness and safety outcomes. Intranasal delivery presents a potentially improved mechanism, and hypoxic conditioning offers a potential stem cell therapy optimization strategy for ischemic brain injury. The use of stem cells to treat ischemic brain injury in clinical trials is in its early phase; however, increasing preclinical evidence suggests that stem cells can contribute to the down-regulation of inflammatory phenotypes and regeneration following injury. The safety and the tolerability profile of stem cells have been confirmed, and their potent therapeutic effects make them powerful therapeutic agents for ischemic brain injury patients.


Author(s):  
Qi Zhang ◽  
Xin-xing Wan ◽  
Xi-min Hu ◽  
Wen-juan Zhao ◽  
Xiao-xia Ban ◽  
...  

Stem cell therapies have shown promising therapeutic effects in restoring damaged tissue and promoting functional repair in a wide range of human diseases. Generations of insulin-producing cells and pancreatic progenitors from stem cells are potential therapeutic methods for treating diabetes and diabetes-related diseases. However, accumulated evidence has demonstrated that multiple types of programmed cell death (PCD) existed in stem cells post-transplantation and compromise their therapeutic efficiency, including apoptosis, autophagy, necroptosis, pyroptosis, and ferroptosis. Understanding the molecular mechanisms in PCD during stem cell transplantation and targeting cell death signaling pathways are vital to successful stem cell therapies. In this review, we highlight the research advances in PCD mechanisms that guide the development of multiple strategies to prevent the loss of stem cells and discuss promising implications for improving stem cell therapy in diabetes and diabetes-related diseases.


Author(s):  
Alireza Ebrahimi ◽  
Hanie Ahmadi ◽  
Zahra Pourfraidon Ghasrodashti ◽  
Nader Tanide ◽  
Reza Shahriarirad ◽  
...  

Stem cell therapy has been used to treat several types of diseases, and it is expected that its therapeutic uses shall increase as novel lines of evidence begin to appear. Furthermore, stem cells have the potential to make new tissues and organs. Thus, some scientists propose that organ transplantation will significantly rely on stem cell technology and organogenesis in the future. Stem cells and its robust potential to differentiate into specific types of cells and regenerate tissues and body organs, have been investigated by numerous clinician scientists and researchers for their therapeutic effects. Degenerative diseases in different organs have been the main target of stem cell therapy. Neurodegenerative diseases such as Alzheimer's, musculoskeletal diseases such as osteoarthritis, congenital cardiovascular diseases, and blood cell diseases such as leukemia are among the health conditions that have benefited from stem cell therapy advancements. One of the most challenging parts of the process of incorporating stem cells into clinical practice is controlling their division and differentiation potentials. Sometimes, their potential for  uncontrolled growth will make these cells tumorigenic. Another caveat in this process is the ability to control the differentiation process. While stem cells can easily differentiate into a wide variety of cells,  a paracrine effect controlled activity, being in an appropriate medium will cause abnormal differentiation leading to treatment failure. In this review, we aim to provide an overview of the therapeutic effects of stem cells in diseases of various organ systems. In order to advance this new treatment to its full potential, researchers should focus on establishing methods to control the differentiation process, while policymakers should take an active role in providing adequate facilities and equipment for these projects. Large population clinical trials are a necessary tool that will help build trust in this method. Moreover, improving social awareness about the advantages and adverse effects of stem cell therapy is required to develop a rational demand in the society, and consequently, healthcare systems should consider established stem cell-based therapeutic methods in their treatment algorithms.  


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Iman Razeghian-Jahromi ◽  
Anthony G. Matta ◽  
Ronan Canitrot ◽  
Mohammad Javad Zibaeenezhad ◽  
Mahboobeh Razmkhah ◽  
...  

AbstractWhile existing remedies failed to fully address the consequences of heart failure, stem cell therapy has been introduced as a promising approach. The present review is a comprehensive appraisal of the impacts of using mesenchymal stem cells (MSCs) in clinical trials mainly conducted on ischemic cardiomyopathy. The benefits of MSC therapy for dysfunctional myocardium are likely attributed to numerous secreted paracrine factors and immunomodulatory effects. The positive outcomes associated with MSC therapy are scar size reduction, reverse remodeling, and angiogenesis. Also, a decreasing in the level of chronic inflammatory markers of heart failure progression like TNF-α is observed. The intense inflammatory reaction in the injured myocardial micro-environment predicts a poor response of scar tissue to MSC therapy. Subsequently, the interval delay between myocardial injury and MSC therapy is not yet determined. The optimal requested dose of cells ranges between 100 to 150 million cells. Allogenic MSCs have different advantages compared to autogenic cells and intra-myocardial injection is the preferred delivery route. The safety and efficacy of MSCs-based therapy have been confirmed in numerous studies, however several undefined parameters like route of administration, optimal timing, source of stem cells, and necessary dose are limiting the routine use of MSCs therapeutic approach in clinical practice. Lastly, pre-conditioning of MSCs and using of exosomes mediated MSCs or genetically modified MSCs may improve the overall therapeutic effect. Future prospective studies establishing a constant procedure for MSCs transplantation are required in order to apply MSC therapy in our daily clinical practice and subsequently improving the overall prognosis of ischemic heart failure patients.


2020 ◽  
Author(s):  
Yifan Jia ◽  
Xin Shu ◽  
Xiaoan Yang ◽  
Haixia sun ◽  
Huijuan Cao ◽  
...  

Abstract Background: This study aimed to investigate the therapeutic effect of umbilical cord mesenchymal stem cells (UCMSCs) on HBV-related liver failure and liver cirrhosis and to compare the different efficacies of UCMSCs after different treatment courses.Methods: This was an observational study that retrospectively considered a three-year period during which 513 patients who received stem cell infusion met the criteria of hepatic failure and liver cirrhosis were identified from databases of the Third Affiliated Hospital of Sun Yat-sen University. Eligible patients were categorized into the liver failure group and liver cirrhosis group. The two groups were divided into different subgroups according to the times of stem cell therapy. In the liver failure group, group A received more than 4 weeks and group B received less than 4 weeks. In the liver cirrhosis group, patients who received more than 4 weeks of stem cell therapy belonged to group C, and group D received less than 4 weeks. The patients were followed up for 24 weeks. The demographics, clinical characteristics, biochemical factors, and MELD scores were recorded and compared among different groups.Results: A total of 64 patients met the criteria of liver failure, and 59 patients met the criteria of liver cirrhosis. After UCMSC treatments, the levels of ALT, AST, and TBIL at all postbaseline time points were significantly lower than those at baseline in the liver failure group and liver cirrhosis group; the PTA and MELD scores only gradually improved in the liver failure group. Four weeks after UCMSC treatment, patients with prolonged treatment with UCMSCs had higher TBIL decline levels than patients who terminated treatment with UCMSCs. After more than 4 weeks of UCMSC treatment, there was no statistically significant difference in the levels of change for ALT, AST, TBIL, PTA value and the MELD score between patients with liver failure with prolonged treatment with UCMSCs and patients with liver cirrhosis with prolonged treatment with UCMSCs at all observation weeks. However, the median decline and cumulative decline in the TBIL level of patients with liver failure with a standard 4-week treatment course were higher than those of patients with liver cirrhosis with a standard 4-week treatment course.Conclusion: Peripheral infusion of UCMSCs showed good therapeutic effects for HBV-related liver failure and liver cirrhosis. Prolonging the treatment course can increase the curative effect of UCMSCs for end-stage liver disease, especially for patients with cirrhosis.


2021 ◽  
Vol 22 (18) ◽  
pp. 10151
Author(s):  
Hau Jun Chan ◽  
Yanshree ◽  
Jaydeep Roy ◽  
George Lim Tipoe ◽  
Man-Lung Fung ◽  
...  

Alzheimer’s disease (AD) is a progressive debilitating neurodegenerative disease and the most common form of dementia in the older population. At present, there is no definitive effective treatment for AD. Therefore, researchers are now looking at stem cell therapy as a possible treatment for AD, but whether stem cells are safe and effective in humans is still not clear. In this narrative review, we discuss both preclinical studies and clinical trials on the therapeutic potential of human stem cells in AD. Preclinical studies have successfully differentiated stem cells into neurons in vitro, indicating the potential viability of stem cell therapy in neurodegenerative diseases. Preclinical studies have also shown that stem cell therapy is safe and effective in improving cognitive performance in animal models, as demonstrated in the Morris water maze test and novel object recognition test. Although few clinical trials have been completed and many trials are still in phase I and II, the initial results confirm the outcomes of the preclinical studies. However, limitations like rejection, tumorigenicity, and ethical issues are still barriers to the advancement of stem cell therapy. In conclusion, the use of stem cells in the treatment of AD shows promise in terms of effectiveness and safety.


Author(s):  
R. G. Carbone ◽  
A. Monselise ◽  
G. Bottino ◽  
S. Negrini ◽  
F. Puppo

AbstractStem cells transplantation after acute myocardial infarction (AMI) has been claimed to restore cardiac function. However, this therapy is still restricted to experimental studies and clinical trials. Early un-blinded studies suggested a benefit from stem cell therapy following AMI. More recent blinded randomized trials have produced mixed results and, notably, the last largest pan-European clinical trial showed the inconclusive results. Furthermore, mechanisms of potential benefit remain uncertain. This review analytically evaluates 34 blinded and un-blinded clinical trials comprising 3142 patients and is aimed to: (1) identify the pros and cons of stem cell therapy up to a 6-month follow-up after AMI comparing benefit or no effectiveness reported in clinical trials; (2) provide useful information for planning future clinical programs of cardiac stem cell therapy.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1546
Author(s):  
Shaima Maliha Riha ◽  
Manira Maarof ◽  
Mh Busra Fauzi

Skin tissue engineering has made remarkable progress in wound healing treatment with the advent of newer fabrication strategies using natural/synthetic polymers and stem cells. Stem cell therapy is used to treat a wide range of injuries and degenerative diseases of the skin. Nevertheless, many related studies demonstrated modest improvement in organ functions due to the low survival rate of transplanted cells at the targeted injured area. Thus, incorporating stem cells into biomaterial offer niches to transplanted stem cells, enhancing their delivery and therapeutic effects. Currently, through the skin tissue engineering approach, many attempts have employed biomaterials as a platform to improve the engraftment of implanted cells and facilitate the function of exogenous cells by mimicking the tissue microenvironment. This review aims to identify the limitations of stem cell therapy in wound healing treatment and potentially highlight how the use of various biomaterials can enhance the therapeutic efficiency of stem cells in tissue regeneration post-implantation. Moreover, the review discusses the combined effects of stem cells and biomaterials in in vitro and in vivo settings followed by identifying the key factors contributing to the treatment outcomes. Apart from stem cells and biomaterials, the role of growth factors and other cellular substitutes used in effective wound healing treatment has been mentioned. In conclusion, the synergistic effect of biomaterials and stem cells provided significant effectiveness in therapeutic outcomes mainly in wound healing improvement.


Sign in / Sign up

Export Citation Format

Share Document