scholarly journals Morphological, Molecular, Biochemical and Nutritional Characterization of Three Major Thais Species from the Sindh Coast of Pakistan

2018 ◽  
Vol 10 (1) ◽  
pp. 33-45
Author(s):  
Syed Abid Ali ◽  
Fozia Humayun ◽  
Iqra Munir ◽  
Shakil Ahmad ◽  
Zarrien Ayub ◽  
...  

Objective: The present study was conducted to investigate the biomass assessment, morphological and molecular identification, nutritive status and biochemical characterization of three major Thais species (T. bufo, T. hippocastanum and T. rudolphi) from the Sindh Coast, Pakistan. Methods: Samples were collected from Buleji and Paradise Point at the Sindh Coast. Species were identified morphologically as well as genetically by amplifying two mitochondrial 16S rDNA & Cytochrome Oxidase I (COI) and one nuclear (Histone H3) genes. Shell microstructure and chemistry were also studied by scanning electron microscopy and Energy Dispersive X-ray spectrometry (EDX). The body muscle was dissected and used for nutritional composition determination such as estimation of total protein, carbohydrates, lipids, protein fingerprinting by Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) and Size-Exclusion - Fast Protein Liquid Chromatography (SEC-FPLC), amino acid and fatty acid analysis. Results: Nutritionally, the total protein was found to be the major content followed by carbohydrate and lipid in the three Thais sp. The presence of medicinally important hemocyanin as abundant hemolymph protein was confirmed via SDS-PAGE and SEC FPLC. Nine different types of fatty acids and a high concentration of essential amino acids were also determined. Conclusion: Our findings suggest that Thais sp. are nutritionally rich and can be consumed as a valuable marine resource to overcome the malnutrition problem in developing countries.

2019 ◽  
Vol 12 (1) ◽  
Author(s):  
SATA YOSHIDA SRIE RAHAYU ◽  
WAHYU PRIHATINI

Abstract. Rahayu SYS, Prihatini W. 2020. Characterization of metallothionein protein from hepatopancreas organ of Pilsbryoconcha exilis collected from Cikaniki River, Western Java, Indonesia. Nusantara Bioscience 12: 1-5. Freshwater environment, undergoing various changes due to the presence of dangerous toxic anthropogenic waste. It causes pressure on the freshwater biota that lives in it, such as Pilsbryoconcha exilis mussel at the bottom of freshwater. This pressure is controlled by the body through the synthesis of a set of stress proteins. Endogenous proteins, metallothionein (MT), in the body of freshwater biota absorb heavy metals in the body of biota, in the form of stress control. This research identified MT protein on P. exilis from contaminated waters such as the Cikaniki river with the average of mercury levels in water, sediment, and hepatopancreas of mussels using AAS method were 0.001 mg/L, 0.120 mg/L, and 1.318 mg/L respectively. Hepatopancreas of P. exilis was extracted using a Tissue Extraction Reagent I kit (Invitrogen), with procedures following the factory manual. The extract was purified by filtration using Sephadec 50; then, the filtration results were migrated together with the PageRuler TM Unstained Low Range Protein Ladder (Fermentas) in Sodium Dodecyl Sulphate Polyacrylamide Gel Electrophoresis (SDS PAGE) gel medium on Biorad Protein II electrophoresis. After completion of electrophoresis, the gel was stained using Page Blue Protein Staining Solution (Fermentas), following the factory manual procedure. Characterization at this research has succeeded in obtaining the MT-I isoform protein measuring 5, 10, and 25 kDa from the hepatopancreas organ of P. exilis.


1984 ◽  
Vol 160 (3) ◽  
pp. 772-787 ◽  
Author(s):  
J A Schmidt

A protocol for the rapid, efficient purification of the major charged species of human interleukin 1 (IL-1) has been developed using high performance anion exchange and size exclusion chromatography. The isolated material is pure as determined by sodium dodecyl sulfate (SDS) gradient polyacrylamide gel electrophoresis (PAGE) and analytical isoelectric focusing (IEF). The molecular weight of the purified material is 15,000 and the isoelectric point (pI) is 6.8, values that are in good agreement with those previously reported for human IL-1. 10(-10) M concentrations of the purified material give half-maximal stimulation in the thymocyte proliferation assay. Amounts of IL-1 sufficient for receptor studies and detailed biochemical analysis can now be produced on a regular basis.


2010 ◽  
Vol 192 (9) ◽  
pp. 2407-2413 ◽  
Author(s):  
Jacalyn M. Green ◽  
Ryan Hollandsworth ◽  
Lenore Pitstick ◽  
Eric L. Carter

ABSTRACT The abg locus of the Escherichia coli chromosome includes three genes encoding proteins (AbgA, AbgB, and AbgT) that enable uptake and utilization of the folate breakdown product, p-aminobenzoyl-glutamate (PABA-GLU). We report on the purification and characterization of the p-aminobenzoyl-glutamate hydrolase (PGH) holoenzyme encoded by abgA and abgB. One-step purification was accomplished using a plasmid carrying abgAB with a hexahistidine tag on the carboxyl terminus of AbgB and subsequent metal affinity chromatography (MAC). Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) revealed two subunits (∼53-kDa and ∼47-kDa proteins) of the expected masses of AbgB and AbgA; N-terminal sequencing confirmed the subunit identification, and amino acid analysis yielded a 1:1 ratio of the subunits. Size exclusion chromatography coupled with light-scattering analysis of purified PGH revealed a predominant molecular mass of 206 kDa and a minor component of 400 to 500 kDa. Both peaks contained PGH activity, and SDS-PAGE revealed that fractions containing activity were composed of both AbgA and AbgB. MAC-purified PGH was highly stimulated by manganese chloride. Kinetic analysis of MAC-purified PGH revealed a Km value for PABA-GLU of 60 ± 0.08 μM and a specific activity of 63,300 ± 600 nmol min−1 mg−1. Folic acid and a variety of dipeptides served as poor substrates of PGH. This locus of the E. coli chromosome may encode a portion of a folate catabolism pathway.


Author(s):  
Wilches Torres A. ◽  
Rojas Caraballo J. ◽  
Sanabria E. ◽  
Reyes MontaÑo E ◽  
FernÁndez Alonso Jl ◽  
...  

Objective: This study focused on purifying and characterizing a lectin from Lepechinia bullata (L. bullata) seeds, and determining its specificity towards tumour-associated carbohydrate-antigens.Methods: Pigments were removed by washing the seeds with NH4OH 0.1 M pH 9.4 and treating the crude extracts with Pectinex®. The purification procedure consisted of anion exchange chromatography on diethylaminoethyl (DEAE)-Sephadex followed by affinity chromatography. For the characterization, the phase was used polyacrylamide gel electrophoresis-sodium dodecyl sulphate (SDS-PAGE), isoelectric focusing, hemagglutination assays, enzyme-linked lectinosorbent assay (ELLA) and thermal shift assay (TSA).Results: 6.2 mg of lectin were obtained from 100 g of seeds. It was able to agglutinate enzymatically treated erythrocytes with a minimal required lectin concentration of 7 μg. ml-1. Strong binding to asialo bovine submaxillary mucine (aBSM) was determined, corroborating Tn recognition.The isoelectric focusing showed a unique band at pH 8.5. Lectin pure shown bands at 28, 48 and 93 kDa by SDS-PAGE, with an incomplete dissociation of the last species despite trying several reduction conditions. By preparative electrophoresis under different conditions, three species were observed too, in all fractions one band at 28 kDa on Tricine-PAGE in reducing and no reducing conditions were found.Amino acid composition, carbohydrate content, thermal stability and Ca2+and Mn2+requirements were determined. N-acetylgalactosamine (GalNAc) and desialylated mucins inhibited the agglutinant activity on human cells. Fetuin inhibited hemagglutination of rabbit erythrocytes.Conclusion: A new lectin was isolated and characterized from L. bullata seeds, it recognizes T/Tn antigen and shows some similarities with other Lamiaceae lectins.


2020 ◽  
Vol 36 (2) ◽  
pp. 45-51
Author(s):  
A.S. Oladejo ◽  
A.O. Bolaji ◽  
I.O. Obisesan ◽  
O.G. Omitogun

The shortcomings of genotype x environment interaction  necessitated the use of molecular methods in characterizing many plant species and in determining their phylogenetic relationships. In this study, some selected cowpea lines (27 varieties) from Obafemi Awolowo University, Ile – Ife, the Institute of Agricultural Research (IAR), Samaru, Kaduna and Genetic Resource Centre, IITA, Ibadan were characterized using sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) profiling. The protein banding profiles of the 27 cowpea varieties were scored and subjected to cluster analysis using Ward's minimum-variance method (WMVM) for dendrogram grouping. The dendrogram generated from the SDS-PAGE profiles grouped the varieties into seven clusters at 52% similarity coefficient. Hence, the biochemical characterization revealed more precise discrimination among the 27 cowpea varieties studied. Keywords: Cowpea, electrophoretic banding profiles, dendrogram grouping, total proteins


BioResources ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. 2947-2960
Author(s):  
Edna M. Hernández-Domínguez ◽  
Jorge Álvarez-Cervantes ◽  
Pedro Gersain Lucio-Ávila ◽  
Gerardo Díaz-Godínez ◽  
Yuridia Mercado-Flores

This study aimed to develop a method for the purification of a xylanase called SMXL1 produced by Stenocarpella maydis and its biochemical characterization. The enzyme was purified using a Rotofor preparative chamber and one chromatographic step in an ion exchange column coupled to equipment FPLC. Posteriorly the protein was characterized, and its effect on the birchwood xylan degradation was determine by HPLC. The purified enzyme showed a molecular weight of 55 kDa calculated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The purification process obtained a yield of 6.5  0.3 %. The activity was stable at a pH range of 4 to 10 and temperatures of 45 to 60 °C. The optimum values of temperature and pH were 55 °C and 4, respectively. The Michaelis constant (Km) value was 2.61 mg/mL and the Vmax was 3.02 µmol/mL/min using birchwood xylan as substrate and the Michaelis-Menten equation. The enzyme is inhibited by the cations Mn2+ and by Fe3+ and degrades the birchwood xylan being the principal products the xylobiose and the xylose. This work is the first report of the purification and biochemical characterization of a xylanase called SMXL1 produced by S. maydis.


Author(s):  
Preeti Anand ◽  
Jay Prakash Pandey ◽  
Dev Mani Pandey

Abstract Background Cocoonase is a proteolytic enzyme that helps in dissolving the silk cocoon shell and exit of silk moth. Chemicals like anhydrous Na2CO3, Marseille soap, soda, ethylene diamine and tartaric acid-based degumming of silk cocoon shell have been in practice. During this process, solubility of sericin protein increased resulting in the release of sericin from the fibroin protein of the silk. However, this process diminishes natural color and softness of the silk. Cocoonase enzyme digests the sericin protein of silk at the anterior portion of the cocoon without disturbing the silk fibroin. However, no thorough characterization of cocoonase and sericin protein as well as imaging analysis of chemical- and enzyme-treated silk sheets has been carried out so far. Therefore, present study aimed for detailed characterization of cocoonase and sericin proteins, phylogenetic analysis, secondary and tertiary structure prediction, and computational validation as well as their interaction with other proteins. Further, identification of tasar silkworm (Antheraea mylitta) pupa stage for cocoonase collection, its purification and effect on silk sheet degumming, scanning electron microscope (SEM)-based comparison of chemical- and enzyme-treated cocoon sheets, and its optical coherence tomography (OCT)-based imaging analysis have been investigated. Various computational tools like Molecular Evolutionary Genetics Analysis (MEGA) X and Figtree, Iterative Threading Assembly Refinement (I-TASSER), self-optimized predicted method with alignment (SOPMA), PROCHECK, University of California, San Francisco (UCSF) Chimera, and Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) were used for characterization of cocoonase and sericin proteins. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), protein purification using Sephadex G 25-column, degumming of cocoon sheet using cocoonase enzyme and chemical Na2CO3, and SEM and OCT analysis of degummed cocoon sheet were performed. Results Predicted normalized B-factors of cocoonase and sericin with respect to α and β regions showed that these regions are structurally more stable in cocoonase while less stable in sericin. Conserved domain analysis revealed that B. mori cocoonase contains a trypsin-like serine protease with active site range 45 to 180 query sequences while substrate binding site from 175 to 200 query sequences. SDS-PAGE analysis of cocoonase indicated its molecular weight of 25–26 kDa. Na2CO3 treatment showed more degumming effect (i.e., cocoon sheet weight loss) as compared to degumming with cocoonase. However, cocoonase-treated silk cocoon sheet holds the natural color of tasar silk, smoothness, and luster compared with the cocoon sheet treated with Na2CO3. SEM-based analysis showed the noticeable variation on the surface of silk fiber treated with cocoonase and Na2CO3. OCT analysis also exemplified the variations in the cross-sectional view of the cocoonase and Na2CO3-treated silk sheets. Conclusions Present study enlightens on the detailed characteristics of cocoonase and sericin proteins, comparative degumming activity, and image analysis of cocoonase enzyme and Na2CO3 chemical-treated silk sheets. Obtained findings illustrated about use of cocoonase enzyme in the degumming of silk cocoon at larger scale that will be a boon to the silk industry.


2000 ◽  
Vol 66 (1) ◽  
pp. 252-256 ◽  
Author(s):  
Katsuichi Saito ◽  
Kazuya Kondo ◽  
Ichiro Kojima ◽  
Atsushi Yokota ◽  
Fusao Tomita

ABSTRACT Streptomyces exfoliatus F3-2 produced an extracellular enzyme that converted levan, a β-2,6-linked fructan, into levanbiose. The enzyme was purified 50-fold from culture supernatant to give a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The molecular weights of this enzyme were 54,000 by SDS-PAGE and 60,000 by gel filtration, suggesting the monomeric structure of the enzyme. The isoelectric point of the enzyme was determined to be 4.7. The optimal pH and temperature of the enzyme for levan degradation were pH 5.5 and 60°C, respectively. The enzyme was stable in the pH range 3.5 to 8.0 and also up to 50°C. The enzyme gave levanbiose as a major degradation product from levan in an exo-acting manner. It was also found that this enzyme catalyzed hydrolysis of such fructooligosaccharides as 1-kestose, nystose, and 1-fructosylnystose by liberating fructose. Thus, this enzyme appeared to hydrolyze not only β-2,6-linkage of levan, but also β-2,1-linkage of fructooligosaccharides. From these data, the enzyme from S. exfoliatus F3-2 was identified as a novel 2,6-β-d-fructan 6-levanbiohydrolase (EC 3.2.1.64 ).


1999 ◽  
Vol 181 (1) ◽  
pp. 91-99 ◽  
Author(s):  
Hisayo Ono ◽  
Kazuhisa Sawada ◽  
Nonpanga Khunajakr ◽  
Tao Tao ◽  
Mihoko Yamamoto ◽  
...  

ABSTRACT 1,4,5,6-Tetrahydro-2-methyl-4-pyrimidinecarboxylic acid (ectoine) is an excellent osmoprotectant. The biosynthetic pathway of ectoine from aspartic β-semialdehyde (ASA), in Halomonas elongata, was elucidated by purification and characterization of each enzyme involved. 2,4-Diaminobutyrate (DABA) aminotransferase catalyzed reversively the first step of the pathway, conversion of ASA to DABA by transamination with l-glutamate. This enzyme required pyridoxal 5′-phosphate and potassium ions for its activity and stability. The gel filtration estimated an apparent molecular mass of 260 kDa, whereas molecular mass measured by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was 44 kDa. This enzyme exhibited an optimum pH of 8.6 and an optimum temperature of 25°C and had Km s of 9.1 mM forl-glutamate and 4.5 mM for dl-ASA. DABA acetyltransferase catalyzed acetylation of DABA to γ-N-acetyl-α,γ-diaminobutyric acid (ADABA) with acetyl coenzyme A and exhibited an optimum pH of 8.2 and an optimum temperature of 20°C in the presence of 0.4 M NaCl. The molecular mass was 45 kDa by gel filtration. Ectoine synthase catalyzed circularization of ADABA to ectoine and exhibited an optimum pH of 8.5 to 9.0 and an optimum temperature of 15°C in the presence of 0.5 M NaCl. This enzyme had an apparent molecular mass of 19 kDa by SDS-PAGE and a Km of 8.4 mM in the presence of 0.77 M NaCl. DABA acetyltransferase and ectoine synthase were stabilized in the presence of NaCl (>2 M) and DABA (100 mM) at temperatures below 30°C.


2006 ◽  
Vol 13 (10) ◽  
pp. 1155-1161 ◽  
Author(s):  
Donghee Cho ◽  
Michael T. Collins

ABSTRACT The protein expression profiles and antigenicities of both culture filtrates (CF) and cellular extracts (CE) of Mycobacterium paratuberculosis were compared by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), one-dimensional electrophoresis (1-DE) and 2-DE immunoblotting, and enzyme-linked immunosorbent assay (ELISA). The CF proteins were harvested from supernatants of stationary-phase liquid cultures and concentrated by size exclusion filtration. The CE proteins were extracted by mechanical disruption of cells using glass beads and a high-speed agitator. Analysis of SDS-PAGE gels showed that the majority of CF proteins had low molecular masses (<50 kDa), whereas CE protein mass ranged more evenly over a broader range up to 100 kDa. By 2-DE, CF proteins had a narrow array of pI values, with most being between pH 4.0 and 5.5; CE proteins spanned pI values from pH 4.0 to 7.0. The antigenicities of CF and CE proteins were first determined by 1-DE and 2-DE immunoblotting with serum from a cow naturally infected with M. paratuberculosis. The serum reacted strongly to more proteins in the CF than the CE. Sera from 444 infected and 412 uninfected cattle were tested by ELISA with CF and CE as solid-phase antigens. Receiver-operator characteristic curve analysis of the ELISA results showed a significantly greater area under the curve for CF compared to CE (P < 0.05). A high degree of variability in protein binding patterns was shown with 1-DE immunoblot analysis with 31 sera from M. paratuberculosis-infected cattle. Collectively, these results indicate that serologic tests for bovine paratuberculosis may be improved by using proteins derived from CF instead of CE. To maximize the diagnostic sensitivity of serologic tests, multiple proteins will be required. Even so, a CF ELISA may not be able to detect all M. paratuberculosis-infected cattle, in particular those in the early stages of infection that have yet to mount an antibody response.


Sign in / Sign up

Export Citation Format

Share Document