scholarly journals Long-Term Lunar Atmospheric Tides in the Southern Hemisphere

2013 ◽  
Vol 7 (1) ◽  
pp. 51-76 ◽  
Author(s):  
Ian R. G. Wilson ◽  
Nikolay S. Sidorenkov

The longitudinal shift-and-add method is used to show that there are N=4 standing wave-like patterns in the summer (DJF) mean sea level pressure (MSLP) and sea-surface temperature (SST) anomaly maps of the Southern Hemisphere between 1947 and 1994. The patterns in the MSLP anomaly maps circumnavigate the Earth in 36, 18, and 9 years. This indicates that they are associated with the long-term lunar atmospheric tides that are either being driven by the 18.0 year Saros cycle or the 18.6 year lunar Draconic cycle. In contrast, the N=4 standing wave-like patterns in the SST anomaly maps circumnavigate the Earth once every 36, 18 and 9 years between 1947 and 1970 but then start circumnavigating the Earth once every 20.6 or 10.3 years between 1971 and 1994. The latter circumnavigation times indicate that they are being driven by the lunar Perigee-Syzygy tidal cycle. It is proposed that the different drift rates for the patterns seen in the MSLP and SST anomaly maps between 1971 and 1994 are the result of a reinforcement of the lunar Draconic cycle by the lunar Perigee-Syzygy cycle at the time of Perihelion. It is claimed that this reinforcement is part of a 31/62/93/186 year lunar tidal cycle that produces variations on time scales of 9.3 and 93 years. Finally, an N=4 standing wave-like pattern in the MSLP that circumnavigates the Southern Hemisphere every 18.6 years will naturally produce large extended regions of abnormal atmospheric pressure passing over the semi-permanent South Pacific subtropical high roughly once every ~ 4.5 years. These moving regions of higher/lower than normal atmospheric pressure will increase/decrease the MSLP of this semi-permanent high pressure system, temporarily increasing/reducing the strength of the East-Pacific trade winds. This may led to conditions that preferentially favor the onset of La Nina/El Nino events.

1998 ◽  
Vol 88 (3) ◽  
pp. 744-757
Author(s):  
L. Gary Holcomb

Abstract The long-term behavior of a narrow band peak near 26 sec in the microseismic background of the Earth has been studied over many years at several sites. The amplitude of this peak has been determined to be a function of the Earth's weather seasons; it is larger during the southern hemisphere winter. In addition, the microseismic background between 20 and 40 sec has been scanned for peaks in the spectra; three more lower-level peaks have been identified with the possible presence of more.


2012 ◽  
Vol 598 ◽  
pp. 310-313 ◽  
Author(s):  
Karel Dvořák ◽  
Marcela Fridrichová ◽  
Dominik Gazdič

The necessity of continuously saving of natural resources and the continuously increasing utilization of waste materials, which results in by product of the primary production, is in the interest of sustainable life on the Earth. These valuable secondary raw materials are stored as waste and urge for use as inexpensive and easily available material. The Institute of Building Materials and Elements Technology at the Brno University of Technology, solves in the long term the problem of alpha gypsum preparation by dehydrating the gypsum in the solution of chloride salts. The gypsum dehydrates to alpha-hemi-hydrate by this method under atmospheric pressure in liquid environment. The tests were brought as far as to the stage of laboratory production. The chloride ions are after dehydration washed out and afterwards the gypsum is dried.


Author(s):  
Nick Woolf ◽  
Roger Angel

We describe a polar Moon base habitat using direct solar energy for construction, food production and atmospheric revitalization. With a growing area as large as 2000 m 2 , it could provide for 40 or more people. The habitat is built like the ancient Roman Pantheon, a stone structure with a top circular oculus, bringing in focused sunlight that is spread out to crops below. The conical, corbelled structure is built from cast regolith blocks, held in compression despite the large internal atmospheric pressure by a regolith overlayer 20–30 m thick. It is sealed on the inside against leaks with thin plastic. A solar mirror concentrator used initially to cast the building blocks is later used to illuminate the habitat through a small pressure window at the oculus. Three years of robotic preparation of the building blocks does not seem excessive for a habitat which can be expected to last for millennia, as has the Treasury of Atreus made by similar dry-stone construction. One goal of returning to the Moon is to demonstrate the practicality of long-term human habitation off the Earth. The off-axis, paraboloidal reflecting mirror is rotated about the vertical polar axis in order to direct horizontal sunlight downward to a focus. In this way, the heavy materials needed from Earth to build and power the habitat are largely limited to the solar concentrator and regolith moving and moulding equipment. By illuminating with a reflector rather than with electricity, the solar collection area is 20 times smaller than would be needed for PV cells. This article is part of a discussion meeting issue ‘Astronomy from the Moon: the next decades’.


The work is aimed to study the gas recovery stabilization prospects in Ukraine on the existing deposits due to renewable processes concerning gas reserves. The article reviews and analyzes the main results in the Shebelynka gas condensate field (GCF) development from the point of view of its water flooding.It is possible to restore the gas reserves in the assumption that they are being developed due to the gas flow from deep horizons. In detail, all factors are taken into consideration, which influences the formation pressure in the process of deposits development. The work presents analysis of the water pressure system in the Shebelinka GCF, the results of the calculation of reserves of edge water (water pressure system of the field is limited), investigates the dynamics of water flooding (intrusion of water in gas deposits) and the role of capillary forces in slowing down the advance of the water front. It was shown that water flooding practically does not affect the development of gas depletion, and the reservoir pressure-decline rate is slowing down both under the influence of known factors and due to the flow of gas through tectonic disruptions, especially in the core deposit. It is proved that when the annual gas consumption is reduced to 1800-1900 million 3, it will be fully compensated by the crossflow of gas. The graphic forecast of gas recovery till 2040 is presented in variants without compressor and compressor opening since 2019, taking into consideration the reserves stock. It has been calculated that with introduction of the planned new compressor station at Shebelinka GCF annual gas production in the period of 2020-2040 will be maintained at 2.4-2.1 billion cubic meters and additional gas extraction for the period 2019-2036 is - 6.5 billion m3. During the development of the field, depression between the main reservoir and the deep horizons of carbon will increase, that might increase the volume of gas crossflow and accelerate the degassing of the Earth, taking into account presence of macro- and micro-tectonic faults. Considering the possibility of a long-term development in the Shebelinka GCF, it is necessary to pay special attention to the fund of wells, its updating, repair or use as a means for receiving the heat from the Earth. The phenomenon of restoration of gas reserves at the Shebelinka GCF, which was established by researches, is promising for other deposits of Ukraine and needs further special researches, on separate objects. Object of research: Shebelinka gas condensate field. Gas extraction and processes for maintaining reservoir pressure, including through the gas crossflow of gas from the deep horizons of tectonic disturbances. Subject of the study: Analysis and forecast of gas production in the future for various options for development, both compressor and non-compressor exploitation of the deposit, taking into consideration maintenance of reservoir pressure and stock reserves.


2014 ◽  
Vol 11 (11) ◽  
pp. 1010-1017 ◽  
Author(s):  
Seoul Hee Nam ◽  
Hyun Wook Lee ◽  
Jin Woo Hong ◽  
Hae June Lee ◽  
Gyoo Cheon Kim

2007 ◽  
Vol 16 (2) ◽  
pp. 139 ◽  
Author(s):  
Julie A. Winkler ◽  
Brian E. Potter ◽  
Dwight F. Wilhelm ◽  
Ryan P. Shadbolt ◽  
Krerk Piromsopa ◽  
...  

The Haines Index is an operational tool for evaluating the potential contribution of dry, unstable air to the development of large or erratic plume-dominated wildfires. The index has three variants related to surface elevation, and is calculated from temperature and humidity measurements at atmospheric pressure levels. To effectively use the Haines Index, fire forecasters and managers must be aware of the climatological and statistical characteristics of the index for their location. However, a detailed, long-term, and spatially extensive analysis of the index does not currently exist. To meet this need, a 40-year (1961–2000) climatology of the Haines Index was developed for North America. The climatology is based on gridded (2.5° latitude × 2.5° longitude) temperature and humidity fields from the NCEP/NCAR reanalysis. The climatology illustrates the large spatial variability in the Haines Index both within and between regions using the different index variants. These spatial variations point to the limitations of the index and must be taken into account when using the Haines Index operationally.


2015 ◽  
Vol 42 (5) ◽  
pp. 477-499
Author(s):  
Michael John Paton

The 2011 tsunami had a devastating effect on the east coast of Japan. Particularly poignant were the century-old markers on hillsides warning against building anywhere below. Nevertheless, such wisdom from traditional knowledge was disregarded because of the perceived invulnerability of the modern. This paper attempts to garner such traditional empirical knowledge regarding the siting of towns and cities by considering the Chinese art/science of fengshui (wind and water) or dili (principles of the earth), the original purpose of which was to site human habitation in the most favourable places for long term survival. This knowledge is then used to consider the placement of cities created by modernity, those founded on and flourishing through the advent of globalisation, such as Hong Kong, Shanghai, St Petersburg, and Sydney.


2021 ◽  
Author(s):  
Cédric Gillmann ◽  
Gregor Golabek ◽  
Sean Raymond ◽  
Paul Tackley ◽  
Maria Schonbachler ◽  
...  

<p>Terrestrial planets in the Solar system generally lack surface liquid water. Earth is at odd with this observation and with the idea of the giant Moon-forming impact that should have vaporized any pre-existing water, leaving behind a dry Earth. Given the evidence available, this means that either water was brought back later or the giant impact could not vaporize all the water.</p><p>We have looked at Venus for answers. Indeed, it is an example of an active planet that may have followed a radically different evolutionary pathway despite the similar mechanisms at work and probably comparable initial conditions. However, due to the lack of present-day plate tectonics, volatile recycling, and any surface liquid oceans, the evolution of Venus has likely been more straightforward than that of the Earth, making it easier to understand and model over its long term evolution.</p><p>Here, we investigate the long-term evolution of Venus using self-consistent numerical models of global thermochemical mantle convection coupled with both an atmospheric evolution model and a late accretion N-body delivery model. We test implications of wet and dry late accretion compositions, using present-day Venus atmosphere measurements. Atmospheric losses are only able to remove a limited amount of water over the history of the planet. We show that late accretion of wet material exceeds this sink. CO<sub>2</sub> and N<sub>2</sub> contributions serve as additional constraints.</p><p>Water-rich asteroids colliding with Venus and releasing their water as vapor cannot explain the composition of Venus atmosphere as we measure it today. It means that the asteroidal material that came to Venus, and thus to Earth, after the giant impact must have been dry (enstatite chondrites), therefore preventing the replenishment of the Earth in water. Because water can obviously be found on our planet today, it means that the water we are now enjoying on Earth has been there since its formation, likely buried deep in the Earth so it could survive the giant impact. This in turn suggests that suggests that planets likely formed with their near-full budget in water, and slowly lost it with time.</p>


2018 ◽  
Author(s):  
Angelo De Santis ◽  
Gianfranco Cianchini ◽  
Rita Di Giovambattista ◽  
Cristoforo Abbattista ◽  
Lucilla Alfonsi ◽  
...  

Abstract. Geosystemics (De Santis 2009, 2014) studies the Earth system as a whole focusing on the possible coupling among the Earth layers (the so called geo-layers), and using universal tools to integrate different methods that can be applied to multi-parameter data, often taken on different platforms. Its main objective is to understand the particular phenomenon of interest from a holistic point of view. In this paper we will deal with earthquakes, considered as a long term chain of processes involving, not only the interaction between different components of the Earth’s interior, but also the coupling of the solid earth with the above neutral and ionized atmosphere, and finally culminating with the main rupture along the fault of concern (De Santis et al., 2015a). Some case studies (particular emphasis is given to recent central Italy earthquakes) will be discussed in the frame of the geosystemic approach for better understanding the physics of the underlying complex dynamical system.


2011 ◽  
Vol 11 (12) ◽  
pp. 5701-5717 ◽  
Author(s):  
J. Fiedler ◽  
G. Baumgarten ◽  
U. Berger ◽  
P. Hoffmann ◽  
N. Kaifler ◽  
...  

Abstract. Noctilucent clouds (NLC) have been measured by the Rayleigh/Mie/Raman-lidar at the ALOMAR research facility in Northern Norway (69° N, 16° E). From 1997 to 2010 NLC were detected during more than 1850 h on 440 different days. Colocated MF-radar measurements and calculations with the Leibniz-Institute Middle Atmosphere (LIMA-) model are used to characterize the background atmosphere. Temperatures as well as horizontal winds at 83 km altitude show distinct differences during NLC observations compared to when NLC are absent. The seasonally averaged temperature is lower and the winds are stronger westward when NLC are detected. The wind separation is a robust feature as it shows up in measurements as well as in model results and it is consistent with the current understanding that lower temperatures support the existence of ice particles. For the whole 14-year data set there is no statistically significant relation between NLC occurrence and solar Lyman-α radiation. On the other hand NLC occurrence and temperatures at 83 km show a significant anti-correlation, which suggests that the thermal state plays a major role for the existence of ice particles and dominates the pure Lyman-α influence on water vapor during certain years. We find the seasonal mean NLC altitudes to be correlated to both Lyman-α radiation and temperature. NLC above ALOMAR are strongly influenced by atmospheric tides. The cloud water content varies by a factor of 2.8 over the diurnal cycle. Diurnal and semidiurnal amplitudes and phases show some pronounced year-to-year variations. In general, amplitudes as well as phases vary in a different manner. Amplitudes change by a factor of more than 3 and phases vary by up to 7 h. Such variability could impact long-term NLC observations which do not cover the full diurnal cycle.


Sign in / Sign up

Export Citation Format

Share Document