scholarly journals Pantheon habitat made from regolith, with a focusing solar reflector

Author(s):  
Nick Woolf ◽  
Roger Angel

We describe a polar Moon base habitat using direct solar energy for construction, food production and atmospheric revitalization. With a growing area as large as 2000 m 2 , it could provide for 40 or more people. The habitat is built like the ancient Roman Pantheon, a stone structure with a top circular oculus, bringing in focused sunlight that is spread out to crops below. The conical, corbelled structure is built from cast regolith blocks, held in compression despite the large internal atmospheric pressure by a regolith overlayer 20–30 m thick. It is sealed on the inside against leaks with thin plastic. A solar mirror concentrator used initially to cast the building blocks is later used to illuminate the habitat through a small pressure window at the oculus. Three years of robotic preparation of the building blocks does not seem excessive for a habitat which can be expected to last for millennia, as has the Treasury of Atreus made by similar dry-stone construction. One goal of returning to the Moon is to demonstrate the practicality of long-term human habitation off the Earth. The off-axis, paraboloidal reflecting mirror is rotated about the vertical polar axis in order to direct horizontal sunlight downward to a focus. In this way, the heavy materials needed from Earth to build and power the habitat are largely limited to the solar concentrator and regolith moving and moulding equipment. By illuminating with a reflector rather than with electricity, the solar collection area is 20 times smaller than would be needed for PV cells. This article is part of a discussion meeting issue ‘Astronomy from the Moon: the next decades’.

2015 ◽  
Vol 42 (5) ◽  
pp. 477-499
Author(s):  
Michael John Paton

The 2011 tsunami had a devastating effect on the east coast of Japan. Particularly poignant were the century-old markers on hillsides warning against building anywhere below. Nevertheless, such wisdom from traditional knowledge was disregarded because of the perceived invulnerability of the modern. This paper attempts to garner such traditional empirical knowledge regarding the siting of towns and cities by considering the Chinese art/science of fengshui (wind and water) or dili (principles of the earth), the original purpose of which was to site human habitation in the most favourable places for long term survival. This knowledge is then used to consider the placement of cities created by modernity, those founded on and flourishing through the advent of globalisation, such as Hong Kong, Shanghai, St Petersburg, and Sydney.


Author(s):  
Chongrui Du ◽  
O.L. Starinova

The tasks of studying the Moon require long-term functioning space systems. Most of the low selenocentric orbits are known to be unstable, which requires a propellant to maintain the orbital structure. For these orbits, the main disturbing factors are the off-center gravitational field of the Moon and the gravity of the Earth and the Sun. This paper analyzes the stability of low selenocentric orbits according to passive motion modeling and takes into account these main disturbing factors. We put forward a criterion for determining the stability of the orbit and used it to analyze the circular orbit of the Moon at an altitude of 100 kilometers. According to different initial data and different dates, we obtained ranges of the Moon’s orbits with good stability. At the same time, we analyzed the rate of change in the longitude of the ascending node, and found a stable low lunar orbit which can operate for a long time.


We know the mass of the Moon very well from the amount it pulls the Earth about in the course of a month; this is measured by the resulting apparent displacements of an asteroid when it is near us. Combining this with the radius shows that the mean density is close to 3.33 g/cm 3 . The velocities of earthquake waves at depths of 30 km or so are too high for common surface rocks but agree with dunite, a rock composed mainly of olivine (Mg, Fe II ) 2 SiO 4 . This has a density of about 3.27 at ordinary pressures. The veloci­ties increase with depth, the rate of increase being apparently a maximum at depth about 0.055 R in Europe and 0.075 R in Japan. It appeared at one time that there was a discontinuity in the velocities at that depth, corresponding to a transition of olivine from a rhombic to a cubic form under pressure. It now seems that the transition, though rapid, is continuous, presumably owing to impurities, but the main point is that the facts are explained by a change of state, and that the pressure at the relevant depth is reached nowhere in the Moon, on account of its smaller size. There will, however, be some compression, and we can work out how much it would be if the Moon is made of a single material. It turns out that the actual mean density of the Moon would be matched if the density at atmospheric pressure is 3.27—just agreeing with the specimen of dunite originally used for comparison. The density at the centre would be 3.41. Thus for most purposes the Moon can be treated as of uniform density. With a few small corrections the ratio 3 C /2 Ma 2 would be 0.5956 ± 0.0010, as against 0.6 for a homogeneous body. To make it appreciably less would require a much greater thickness of lighter surface rocks than in the Earth.


2018 ◽  
Vol 20 (1) ◽  
pp. 3
Author(s):  
Osamu Odawara

Space technology has been developed for frontier exploration not only in low-earth orbit environment but also beyond the earth orbit to the Moon and Mars, where material resources might be strongly restricted and almost impossible to be resupplied from the earth for distant and long-term missions performance toward “long-stays of humans in space”. For performing such long-term space explorations, none would be enough to develop technologies with resources only from the earth; it should be required to utilize resources on other places with different nature of the earth, i.e., in-situ resource utilization. One of important challenges of lunar in-situ resource utilization is thermal control of spacecraft on lunar surface for long-lunar durations. Such thermal control under “long-term field operation” would be solved by “thermal wadis” studied as a part of sustainable researches on overnight survivals such as lunar-night. The resources such as metal oxides that exist on planets or satellites could be refined, and utilized as a supply of heat energy, where combustion synthesis can stand as a hopeful technology for such requirements. The combustion synthesis technology is mainly characterized with generation of high-temperature, spontaneous propagation of reaction, rapid synthesis and high operability under various influences with centrifugal-force, low-gravity and high vacuum. These concepts, technologies and hardware would be applicable to both the Moon and Mars, and these capabilities might achieve the maximum benefits of in-situ resource utilization with the aid of combustion synthesis applications. The present paper mainly concerns the combustion synthesis technologies for sustainable lunar overnight survivals by focusing on “potential precursor synthesis and formation”, “in-situ resource utilization in extreme environments” and “exergy loss minimization with efficient energy conversion”.


2020 ◽  
Author(s):  
guo linli ◽  
blanc michel ◽  
huang tieqiu ◽  
huang jiangze ◽  
yuan jianping ◽  
...  

<p>    The Moon is sometimes also called the "eighth continent" of the Earth. Determining how to utilize cis-lunar orbital infrastructures and lunar resources to carry out new economic activities extended to the space of the Earth-Moon system is one of the long-term goals of lunar exploration activities around the world. Future long-term human deep-space exploration missions to the Moon, on the Moon surface or using the Moon to serve farther destinations will require the utilization of lunar surface or asteroid resources to produce water, oxygen and other consumables needed to maintain human survival and to produce liquid propellant for the supply of spacecraft on the lunar surface. In complement to exploration activities, Moon tourism in cis-lunar orbit and on the lunar surface will become more and more attractive with the increase of  human spaceflight capacity and the development of commercial space activities. However, the development of a sustainable Earth-Moon ecosystem requires that we solve the following five problems:</p><p>(1)How to design alow-cost cis-lunar space transportation capacity? To find an optimal solution, one must compare direct Earth-Moon flight modes with flights based on the utilization of space stations, and identify the most economical spacecraft architectures.</p><p>(2)How to design an efficient set ofcis-lunar orbital infrastructures combining LEO space stations, Earth-Moon L1/L2 point space stations and Moon bases for commercial tourism, taking into account key issues such as energy, communications and others?</p><p>(3)Significant amounts ofliquid oxygen, water, liquid propellant and structural material will be needed for human bases, crew environmental control and life support systems, spacecraft propulsion systems, Moon surface storage and transportation systems. How to  design in-situ resources utilization (ISRU) of the Moon, including its soil, rocks and polar water ice reservoirs, to produce the needed amounts?</p><p>(4) How to simulate on the Earth surface the different components and key technologies that will enable a future long-term human residence on the Moon surface?</p><p>(5). How to accommodate the co-development of public and commercial space and foster international cooperation? How can space policies and international space law help this co-development?</p><p>    China has made rapid progress in robotic lunar exploration activities in the last 20 years, as illustrated by the recent discoveries provided by the Chang'e-4 lander on the far side of the Moon. By 2061, China will have gone into manned lunar exploration and built Moon bases. In preparation for this new phase of its contribution to space exploration, lunar surface simulation instruments have been built in Beijing, Shenzhen and other places in China. A series of achievements have been made in the field of space life sciences . An ambitious project to establish a large Moon base simulation test field, the Lunar Base Yulin (LBY) project, currently in its design phase in Yulin, Shaanxi Province in China, will allow the verification of key relevant technologies.</p><p>    By the 2061 Horizon, we believe that international cooperation and public-private partnership will be key elements to enable this vision of a new, sustainable cis-lunar space economy.</p>


Author(s):  
James M. D. Day ◽  
Frederic Moynier

The Moon is depleted in volatile elements relative to the Earth and Mars. Low abundances of volatile elements, fractionated stable isotope ratios of S, Cl, K and Zn, high μ ( 238 U/ 204 Pb) and long-term Rb/Sr depletion are distinguishing features of the Moon, relative to the Earth. These geochemical characteristics indicate both inheritance of volatile-depleted materials that formed the Moon and planets and subsequent evaporative loss of volatile elements that occurred during lunar formation and differentiation. Models of volatile loss through localized eruptive degassing are not consistent with the available S, Cl, Zn and K isotopes and abundance data for the Moon. The most probable cause of volatile depletion is global-scale evaporation resulting from a giant impact or a magma ocean phase where inefficient volatile loss during magmatic convection led to the present distribution of volatile elements within mantle and crustal reservoirs. Problems exist for models of planetary volatile depletion following giant impact. Most critically, in this model, the volatile loss requires preferential delivery and retention of late-accreted volatiles to the Earth compared with the Moon. Different proportions of late-accreted mass are computed to explain present-day distributions of volatile and moderately volatile elements (e.g. Pb, Zn; 5 to >10%) relative to highly siderophile elements (approx. 0.5%) for the Earth. Models of early magma ocean phases may be more effective in explaining the volatile loss. Basaltic materials (e.g. eucrites and angrites) from highly differentiated airless asteroids are volatile-depleted, like the Moon, whereas the Earth and Mars have proportionally greater volatile contents. Parent-body size and the existence of early atmospheres are therefore likely to represent fundamental controls on planetary volatile retention or loss.


2019 ◽  
Vol 11 (23) ◽  
pp. 2805 ◽  
Author(s):  
Yue Sui ◽  
Huadong Guo ◽  
Guang Liu ◽  
Yuanzhen Ren

The Antarctic and Arctic have always been critical areas of earth science research and are sensitive to global climate change. Global climate change exhibits diversity characteristics on both temporal and spatial scales. Since the Moon-based earth observation platform could provide large-scale, multi-angle, and long-term measurements complementary to the satellite-based Earth observation data, it is necessary to study the observation characteristics of this new platform. With deepening understanding of Moon-based observations, we have seen its good observation ability in the middle and low latitudes of the Earth’s surface, but for polar regions, we need to further study the observation characteristics of this platform. Based on the above objectives, we used the Moon-based Earth observation geometric model to quantify the geometric relationship between the Sun, Moon, and Earth. Assuming the sensor is at the center of the nearside of the Moon, the coverage characteristics of the earth feature points are counted. The observation intervals, access frequency, and the angle information of each point during 100 years were obtained, and the variation rule was analyzed. The research showed that the lunar platform could carry out ideal observations for the polar regions. For the North and South poles, a continuous observation duration of 14.5 days could be obtained, and as the latitude decreased, the duration time was reduced to less than one day at the latitude of 65° in each hemisphere. The dominant observation time of the North Pole is concentrated from mid-March to mid-September, and for the South Pole, it is the rest of the year, and as the latitude decreases, it extends outward from both sides. The annual coverage time and frequency will change with the relationship between the Moon and the Earth. This study also proves that the Moon-based observation has multi-angle observation advantages for the Arctic and the Antarctic areas, which can help better understand large-scale geoscientific phenomena. The above findings indicate that the Moon-based observation can be applied as a new type of remote sensing technology to the observation field of the Earth’s polar regions.


2003 ◽  
Vol 1 ◽  
pp. 95-101
Author(s):  
F. Deleflie ◽  
P. Exertier ◽  
P. Berio ◽  
G. Metris ◽  
O. Laurain ◽  
...  

Abstract. The present study consists in studying the mean orbital motion of the CHAMP satellite, through a single long arc on a period of time of 200 days in 2001. We actually investigate the sensibility of its mean motion to its accelerometric data, as measures of the surface forces, over that period. In order to accurately determine the mean motion of CHAMP, we use “observed" mean orbital elements computed, by filtering, from 1-day GPS orbits. On the other hand, we use a semi-analytical model to compute the arc. It consists in numerically integrating the effects of the mean potentials (due to the Earth and the Moon and Sun), and the effects of mean surfaces forces acting on the satellite. These later are, in case of CHAMP, provided by an averaging of the Gauss system of equations. Results of the fit of the long arc give a relative sensibility of about 10-3, although our gravitational mean model is not well suited to describe very low altitude orbits. This technique, which is purely dynamical, enables us to control the decreasing of the trajectory altitude, as a possibility to validate accelerometric data on a long term basis.Key words. Mean orbital motion, accelerometric data


2013 ◽  
Vol 7 (1) ◽  
pp. 51-76 ◽  
Author(s):  
Ian R. G. Wilson ◽  
Nikolay S. Sidorenkov

The longitudinal shift-and-add method is used to show that there are N=4 standing wave-like patterns in the summer (DJF) mean sea level pressure (MSLP) and sea-surface temperature (SST) anomaly maps of the Southern Hemisphere between 1947 and 1994. The patterns in the MSLP anomaly maps circumnavigate the Earth in 36, 18, and 9 years. This indicates that they are associated with the long-term lunar atmospheric tides that are either being driven by the 18.0 year Saros cycle or the 18.6 year lunar Draconic cycle. In contrast, the N=4 standing wave-like patterns in the SST anomaly maps circumnavigate the Earth once every 36, 18 and 9 years between 1947 and 1970 but then start circumnavigating the Earth once every 20.6 or 10.3 years between 1971 and 1994. The latter circumnavigation times indicate that they are being driven by the lunar Perigee-Syzygy tidal cycle. It is proposed that the different drift rates for the patterns seen in the MSLP and SST anomaly maps between 1971 and 1994 are the result of a reinforcement of the lunar Draconic cycle by the lunar Perigee-Syzygy cycle at the time of Perihelion. It is claimed that this reinforcement is part of a 31/62/93/186 year lunar tidal cycle that produces variations on time scales of 9.3 and 93 years. Finally, an N=4 standing wave-like pattern in the MSLP that circumnavigates the Southern Hemisphere every 18.6 years will naturally produce large extended regions of abnormal atmospheric pressure passing over the semi-permanent South Pacific subtropical high roughly once every ~ 4.5 years. These moving regions of higher/lower than normal atmospheric pressure will increase/decrease the MSLP of this semi-permanent high pressure system, temporarily increasing/reducing the strength of the East-Pacific trade winds. This may led to conditions that preferentially favor the onset of La Nina/El Nino events.


2019 ◽  
Author(s):  
Anant Balakumar

The outcome this study is to design is an electrically operated blender to a solar operation. There is an increasingly intense need to harness solar energy due to an ever growing shortage of conventional energy sources, the instant invention is concerned with method and apparatus for solar concentrator micro-mirrors on solar power satellites and the moon to focus and reflect large quantities of solar energy. Method and apparatus are taught for directly reflecting solar energy to the Earth; reflecting solar energy to a microwave converter in space which transmits microwave energy to the Earth; and reflecting solar energy to a laser radiation converter which beams laser radiation to the Earth. The concentrated energy received at the Earth may be converted directly to electricity or indirectly by thermo-mechanical means. The advantages and disadvantages of the different means of sending such concentrated energy to the Earth are discussed. A particularly important objective of this invention is the focusing of sunlight for solar power conversion and production. The instant invention can contribute to the goal of achieving environmentally clean solar energy on a large enough scale to be competitive with conventional energy sources. Available online at https://int-scientific-journals.com


Sign in / Sign up

Export Citation Format

Share Document