Facile Solvothermal Preparation and Tribological Performance of PbSe Nanoparticles

2019 ◽  
Vol 11 (1) ◽  
pp. 34-39
Author(s):  
Feng Yang ◽  
M.Q. Xue

Background: Metal dichalcogenides are important branch of functional materials, which have renewed great attention in academia and industry because of their various significant applications. Objective: The aim of the present study is to synthesize PbSe by solvothermal and investigate PbSe’s tribological properties. Results: The XRD pattern of the sample can be readily indexed as PbSe. The tribological properties of PbSe as additives in base oil were investigated using a UMT-2 ball-on-disc tribotester. Under the determinate conditions, the friction coefficient of the base oil containing 1.0 wt. % PbSe was lower than that of the base oil. A stable tribofilm on the rubbing surface could explain the improved tribological properties of PbSe as additives. Conclusion: PbSe nanoparticles have been synthesized successfully via solvothermal reaction. The preliminary tribological experimental results show that the PbSe could be a lubricant additive to the base oil and able to improve the tribological properties under the optimal concentration (1.0 wt. %). The result of tribological experiments demonstrated that the stable tribofilm with PbSe nanoparticles on the rubbing surface could benefit to decreasing surface friction.

Author(s):  
Lifeng Hao ◽  
Feng Cao ◽  
Zewen Jiang ◽  
Jiusheng Li ◽  
Tianhui Ren

Oil-soluble compounds containing boron as lubricating additives were restricted by the hydrolysis of borate ester. In order to overcome this problem, cerium borate nanoparticles modified with oleic acid (O-CeB) as a potential substitute for conventional lubricant additive were studied in detail. The microstructures of the prepared nanoparticles were characterized. Tribological properties of cerium borate nanoparticles used as additive in base oil were evaluated, and the worn surface of the steel ball was investigated. The results show that O-CeB possesses better anti-wear ability at relatively higher concentration; in particular, it shows better friction-reducing ability under all these studied concentrations. Under higher load, its anti-wear property and friction-reducing property are better than that of Vanlube 289 in the base oil. Based on these results of interferometric surface profilometer and X-ray photoelectron spectroscopy, it can be deduced that a continuous resistance film containing depositions and the tribochemical reaction products was formed during the sliding process.


Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2835 ◽  
Author(s):  
Zheng Li ◽  
Fanshan Meng ◽  
Haohao Ding ◽  
Wenjian Wang ◽  
Qiyue Liu

WS2-C is produced from a hydrothermal reaction, in which WS2 nano-sheets are coated with carbon, using glucose as the carbon source. In order to investigate the tribological properties of WS2-C as a lubricant additive, WS2-C was modified by surfactant Span80, and friction tests were carried out on an MRS-10A four-ball friction and wear tester. The results show that Span80 can promote the dispersibility of WS2-C effectively in base oil. Adding an appropriate concentration of WS2-C can improve the anti-wear and anti-friction performance of the base oil. The friction coefficient reached its lowest point upon adding 0.1 wt % WS2-C, reduced by 16.7% compared to the base oil. Meanwhile, the wear scar diameter reached its minimum with 0.15 wt % WS2, decreasing by 26.45%. Moreover, at this concentration, the depth and width of the groove and the surface roughness on the wear scar achieved their minimum. It is concluded that WS2-C dispersed in oil could enter friction pairs to avoid their direct contact, thereby effectively reducing friction and wear. At the same time, WS2-C reacts with the friction matrix material to form a protective film, composed of C, Fe2O3, FeSO4, WO3, and WS2, repairing the worn surface.


2020 ◽  
Vol 72 (7) ◽  
pp. 851-856
Author(s):  
Zhengfeng Cao ◽  
Yanqiu Xia ◽  
Chuan Chen ◽  
Kai Zheng ◽  
Yi Zhang

Purpose This paper aims to explore polyaniline (PANI) as a lubricant additive to improve the anti-corrosion and tribological properties of ionic liquids (ILs) for actual applications. Design/methodology/approach ILs were synthesized by dissolving lithium salts in synthetic oil and were used as a base oil to prepare ILs-based greases. PANI was used as an additive. The tribological properties were investigated in detail and the anti-corrosion ability was also assessed via salt spray test. After friction test, the worn surfaces were characterized by scanning electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy to analyze the lubrication mechanisms. Findings PANI not only reduces the corrosion but also improves the friction reduction and anti-wear abilities of the ILs-based greases. The analysis indicates that the protective films generated on the worn surfaces were responsible for the preferable anti-corrosion and tribological properties. Originality/value This paper provides an effective approach to improve the anti-corrosion and tribological properties of ILs for actual applications. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-11-2019-0469/


RSC Advances ◽  
2017 ◽  
Vol 7 (8) ◽  
pp. 4312-4319 ◽  
Author(s):  
Maoquan Xue ◽  
Zhiping Wang ◽  
Feng Yuan ◽  
Xianghua Zhang ◽  
Wei Wei ◽  
...  

TiO2/Ti3C2Tx hybrid nanocomposites were successfully prepared by a liquid phase synthesis technology. The hybrid nanocomposites improve the tribological properties of base oil by mending the surface and formation a uniform tribofilm on the surface.


2016 ◽  
Vol 721 ◽  
pp. 451-455
Author(s):  
Armands Leitans ◽  
Eriks Palcevskis

In work investigated effects of zirconium oxide (ZrO2), spinel (MgAl2O4) and mullite (Al6Si2O13) nanosized powders on the base oil tribological properties. The nanosized (30-40nm) powders manufactured by plasma chemical synthesis method. Tribological experiments used on ball-on-disc type tribometer, measured coefficient of friction and determined metalic disc wear. Base oil used selectively purified mineral oil (conform SAE-20 viscosity) without any functional additives. Nanosized powders dispersed in base oil at 0.5; 1.0; 2.0; wt.%. At work cocluded, that the adition nanoparticles in base oil, possible reduced friction pair wear and friction coefficient. As the main results include spinel (MgAl2O4) nanoparticles 0.5 and 1.0 wt. % concentration ability reduced friction coeffiecient value.


2008 ◽  
Vol 130 (3) ◽  
Author(s):  
Wang Li-jun ◽  
Guo Chu-wen ◽  
Ryuichiro Yamane

The synthesis and application of nanometer-sized particles have received considerable attention in recent years because of their different physical and chemical properties from those of the bulk materials or individual molecules; however, few experimental investigations on the tribological properties of lubricating oils with and without nanoferromagnetic particles have been performed. This work investigates the tribological properties of Mn0.78Zn0.22Fe2O4 nanoferromagnetic as additive in 46# turbine oil using a four-ball friction and wear tester. It is shown that the 46# turbine oil containing Mn0.78Zn0.22Fe2O4 nanoparticles has much better friction reduction and antiwear abilities than the base oil. The 46# turbine oil doped with 6wt%Mn0.78Zn0.22Fe2O4 nanoparticles show the best tribological properties among the tested oil samples, and PB value is increased by 26%, and the decreasing percentage of wear scar diameter is 25.45% compared to base oil.


2022 ◽  
Vol 165 ◽  
pp. 107273
Author(s):  
Bo Yu ◽  
Kai Wang ◽  
Xianjuan Pang ◽  
Gensheng Wu ◽  
Jibin Pu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document