Atomistic Insights Into the Regulatory Mechanisms Mediated by Post- Translational Modifications: Molecular Dynamics Investigations

2012 ◽  
Vol 2 (4) ◽  
pp. 344-362
Author(s):  
Elena Papaleo ◽  
Nicola Casiraghi ◽  
Alberto Arrigoni ◽  
Valeria Ranzani
2021 ◽  
Vol 17 (5) ◽  
pp. e1008988
Author(s):  
Nikolina ŠoŠtarić ◽  
Vera van Noort

Post-translational modifications (PTMs) play a vital, yet often overlooked role in the living cells through modulation of protein properties, such as localization and affinity towards their interactors, thereby enabling quick adaptation to changing environmental conditions. We have previously benchmarked a computational framework for the prediction of PTMs’ effects on the stability of protein-protein interactions, which has molecular dynamics simulations followed by free energy calculations at its core. In the present work, we apply this framework to publicly available data on Saccharomyces cerevisiae protein structures and PTM sites, identified in both normal and stress conditions. We predict proteome-wide effects of acetylations and phosphorylations on protein-protein interactions and find that acetylations more frequently have locally stabilizing roles in protein interactions, while the opposite is true for phosphorylations. However, the overall impact of PTMs on protein-protein interactions is more complex than a simple sum of local changes caused by the introduction of PTMs and adds to our understanding of PTM cross-talk. We further use the obtained data to calculate the conformational changes brought about by PTMs. Finally, conservation of the analyzed PTM residues in orthologues shows that some predictions for yeast proteins will be mirrored to other organisms, including human. This work, therefore, contributes to our overall understanding of the modulation of the cellular protein interaction networks in yeast and beyond.


Nanoscale ◽  
2019 ◽  
Vol 11 (20) ◽  
pp. 9920-9930 ◽  
Author(s):  
Emma Letizia Bonome ◽  
Fabio Cecconi ◽  
Mauro Chinappi

Molecular dynamics simulations allowed to characterize the co-translocational unfolding pathway of ubiquitin through a biological nanopore.


2019 ◽  
Vol 20 (7) ◽  
pp. 1548 ◽  
Author(s):  
Vincenza Aliperti ◽  
Giulia Sgueglia ◽  
Francesco Aniello ◽  
Emilia Vitale ◽  
Laura Fucci ◽  
...  

EGR1 is a transcription factor expressed in many cell types that regulates genes involved in different biological processes including growth, proliferation, and apoptosis. Dysregulation of EGR1 expression has been associated with many pathological conditions such as tumors and brain diseases. Known molecular mechanisms underlying the control of EGR1 function include regulation of transcription, mRNA and protein stability, and post-translational modifications. Here we describe the identification of a splicing isoform for the human EGR1 gene. The newly identified splicing transcript encodes a shorter protein compared to the canonical EGR1. This isoform lacks a region belonging to the N-terminal activation domain and although it is capable of entering the nucleus, it is unable to activate transcription fully relative to the canonical isoform.


2019 ◽  
Vol 20 (22) ◽  
pp. 5571 ◽  
Author(s):  
Claude Bobo ◽  
Claire Céré ◽  
Mélody Dufossée ◽  
Alain Dautant ◽  
Violaine Moreau ◽  
...  

Bcl-xL is an oncogene of which the survival functions are finely tuned by post-translational modifications (PTM). Within the Bcl-2 family of proteins, Bcl-xL shows unique eligibility to deamidation, a time-related spontaneous reaction. Deamidation is still a largely overlooked PTM due to a lack of easy techniques to monitor Asn→Asp/IsoAsp conversions or Glu→Gln conversions. Being able to detect PTMs is essential to achieve a comprehensive description of all the regulatory mechanisms and functions a protein can carry out. Here, we report a gel composition improving the electrophoretic separation of deamidated forms of Bcl-xL generated either by mutagenesis or by alkaline treatment. Importantly, this new gel formulation proved efficient to provide the long-sought evidence that even doubly-deamidated Bcl-xL remains eligible for regulation by phosphorylation.


Cells ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 104 ◽  
Author(s):  
Dmitry A. Kretov ◽  
Daria A. Mordovkina ◽  
Irina A. Eliseeva ◽  
Dmitry N. Lyabin ◽  
Dmitry N. Polyakov ◽  
...  

The Y-box binding protein 1 (YB-1) is an RNA/DNA-binding protein regulating gene expression in the cytoplasm and the nucleus. Although mostly cytoplasmic, YB-1 accumulates in the nucleus under stress conditions. Its nuclear localization is associated with aggressiveness and multidrug resistance of cancer cells, which makes the understanding of the regulatory mechanisms of YB-1 subcellular distribution essential. Here, we report that inhibition of RNA polymerase II (RNAPII) activity results in the nuclear accumulation of YB-1 accompanied by its phosphorylation at Ser102. The inhibition of kinase activity reduces YB-1 phosphorylation and its accumulation in the nucleus. The presence of RNA in the nucleus is shown to be required for the nuclear retention of YB-1. Thus, the subcellular localization of YB-1 depends on its post-translational modifications (PTMs) and intracellular RNA distribution.


2015 ◽  
Vol 93 (10) ◽  
pp. 843-854 ◽  
Author(s):  
Andrew N. Stammers ◽  
Shanel E. Susser ◽  
Naomi C. Hamm ◽  
Michael W. Hlynsky ◽  
Dustin E. Kimber ◽  
...  

The sarco(endo)plasmic reticulum calcium ATPase (SERCA) is responsible for transporting calcium (Ca2+) from the cytosol into the lumen of the sarcoplasmic reticulum (SR) following muscular contraction. The Ca2+ sequestering activity of SERCA facilitates muscular relaxation in both cardiac and skeletal muscle. There are more than 10 distinct isoforms of SERCA expressed in different tissues. SERCA2a is the primary isoform expressed in cardiac tissue, whereas SERCA1a is the predominant isoform expressed in fast-twitch skeletal muscle. The Ca2+ sequestering activity of SERCA is regulated at the level of protein content and is further modified by the endogenous proteins phospholamban (PLN) and sarcolipin (SLN). Additionally, several novel mechanisms, including post-translational modifications and microRNAs (miRNAs) are emerging as integral regulators of Ca2+ transport activity. These regulatory mechanisms are clinically relevant, as dysregulated SERCA function has been implicated in the pathology of several disease states, including heart failure. Currently, several clinical trials are underway that utilize novel therapeutic approaches to restore SERCA2a activity in humans. The purpose of this review is to examine the regulatory mechanisms of the SERCA pump, with a particular emphasis on the influence of exercise in preventing the pathological conditions associated with impaired SERCA function.


Sign in / Sign up

Export Citation Format

Share Document