Xanthoangelol Isolated from Angelica keiskei Roots Prevents Dextran Sulfate Sodium-Treated Colitis in Mice

2020 ◽  
Vol 10 (5) ◽  
pp. 655-663
Author(s):  
Yoshiyuki Kimura ◽  
Kimye Baba

Background: The therapeutic effects of a number of natural products on Inflammatory Bowel Disease (IBD) have recently been examined in detail. The whole herb and roots of Angelica keiskei (Umblliferae) have traditionally been used as a diuretic, to treat gastrointestinal diseases such as gastric ulcers and diarrhea in Japan. Objectives: The present study was performed to investigate the effects of xanthoangelol, a major chalcone of Angelica keiskei roots, on diarrhea and inflammation in the large intestine of IBD model mice. Methods: Xanthoangelol (10 & 25 mg/kg) was orally administered to mice with 3% Dextran Sulfate Sodium (DSS)-induced colitis. Blood samples were collected during the experimental period, subjected to a full blood count test, and colonic cytokine and chemokine levels were measured. Results: Xanthoangelol (25 mg/kg) reduced the Disease Activity Index (DAI) of colitis. It also attenuated DSS-induced reductions in red blood cell and platelet counts as well as Hb and Ht levels. A histological examination of the colon using direct fast scarlet staining showed that xanthoangelol prevented DSS-induced mucosal ulceration and eosinophil infiltration. Xanthoangelol also reduced DSS-induced increases in colonic MCP-1, IL-1β, and TNF-α levels. Conclusions: Xanthoangelol reduced DSS-induced increases in colonic IL-1β, TNF-α, and MCP-1 levels and prevented eosinophil infiltration, which supports its potential as a treatment for IBD.

Author(s):  
Meysam Hasannejad-Bibalan ◽  
Ali Mojtahedi ◽  
Morteza Eshaghi ◽  
Mahdi Rohani ◽  
Mohammad Reza Pourshafie ◽  
...  

AbstractInflammatory bowel disease (IBD) comprises two major illnesses: Crohn's disease (CD) and ulcerative colitis (UC). Dextran sulfate sodium (DSS) mouse colitis model has been used in understanding the mechanism of IBD. This study was conducted to examine selected Lactobacillus spp. as potential IBD treatment in the DSS-induced animal model. Balb/c mice were used and colitis was induced by adding 5% dextran sodium sulfate into the drinking water for 8 days. Colon length, disease activity index (DAI) and histological analysis were measured as markers of inflammation in DSS colitis mice. The majority of the Lactobacillus species significantly prevented the shortening of the colon length compared with the DSS group. The DAI scores of mice were significantly reduced following usage of four Lactobacillus strains included: Lactobacillus plantarum 03 and 06, Lactobacillus brevis 02 and Lactobacillus rhamnosus 01. The histological analysis exhibited that oral administration of Lactobacillus strains had therapeutic effects on mice colitis. L. plantarum and L. brevis showed better therapeutic effect against DSS-induced acute colitis mice. The probiotic activities of these three isolates indicated that the probiotic effects were strain specific and none of these useful bacteria could exhibit all of the valued probiotic properties simultaneously.


Author(s):  
Suzanne Mashtoub ◽  
Bang V. Hoang ◽  
Megan Vu ◽  
Kerry A. Lymn ◽  
Christine Feinle-Bisset ◽  
...  

Plant-sourced formulations such as Iberogast and the traditional Chinese medicine formulation, Cmed, purportedly possess anti-inflammatory and radical scavenging properties. We investigated Iberogast and Cmed, independently, for their potential to decrease the severity of the large bowel inflammatory disorder, ulcerative colitis. Sprague Dawley rats (n = 8/group) received daily 1 mL gavages (days 0-13) of water, Iberogast (100 μL/200 μL), or Cmed (10 mg/20 mg). Rats ingested 2% dextran sulfate sodium or water ad libitum for 7 days commencing on day 5. Dextran sulfate sodium administration increased disease activity index scores from days 6 to 12, compared with water controls ( P < .05). On day 10, 200 μL Iberogast decreased disease activity index scores in colitic rats compared with colitic controls ( P < .05). Neither Iberogast nor Cmed achieved statistical significance for daily metabolic parameters or colonic crypt depth. The therapeutic effects of Iberogast and Cmed were minimal in the colitis setting. Further studies of plant extracts are required investigating greater concentrations and alternative delivery systems.


Nutrients ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2309 ◽  
Author(s):  
Mohamed A. Morsy ◽  
Sumeet Gupta ◽  
Anroop B. Nair ◽  
Katharigatta N. Venugopala ◽  
Khaled Greish ◽  
...  

Inflammatory bowel disease is a multifactorial inflammatory condition. This study aimed to test the protective effects of Spirulina platensis against ulcerative colitis (UC). UC was induced in thirty-six male Wistar rats by adding dextran sulfate sodium (DSS) to their drinking water, while a control group received only drinking water. UC rats were equally-divided into six groups that received a single oral daily dose of vehicle (DSS), sulfasalazine (SSZ, 50 mg/kg/day), chloroform or the hydroalcoholic extracts of Spirulina platensis (100 or 200 mg/kg/day) for 15 days, and then blood and colon samples were harvested for determination of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), erythrocyte sedimentation rate (ESR), myeloperoxidase (MPO), and histopathology. At the end of the study, compared to time-matched controls, UC rats showed increased TNF-α (1.64-fold), IL-6 (5.73-fold), ESR (3.18-fold), and MPO (1.61-fold), along with loss of body weight (24.73%) and disease activity index (1.767 ± 0.216 vs. 0 ± 0), p < 0.001. These effects were prevented by SSZ treatment (p < 0.001 vs. DSS). The hydroalcoholic extract of Spirulina platensis dose-dependently modulated all DSS-induced inflammatory changes. However, the chloroform extract significantly lowered only IL-6 and ESR, but not TNF-α or MPO levels. The protective effects of the hydroalcoholic extract of Spirulina platensis against experimental UC involved mitigation of DSS-induced inflammation.


2021 ◽  
Vol 5 (Supplement_2) ◽  
pp. 306-306
Author(s):  
Yu-Shan Chen ◽  
Yu Zhi Lian ◽  
Jane Chao

Abstract Objectives Ulcerative colitis (UC) is a chronic inflammatory disease in the colon, and the prevalence of UC is increasing worldwide. Lycium barbarum polysaccharides (LBP) from wolfberry extract has immunomodulatory effects, and act as a prebiotics candidate. Capsaicin (CAP) as an active ingredient of chili peppers has the potential for anti-inflammation and antioxidation. This study investigated the effects of LBP and CAP on anti-inflammation and antioxidation in rats with dextran sulfate sodium (DSS)-induced UC. Methods Male Sprague-Dawley rats were divided into five groups: control, UC (DSS), UC treated with 100 mg/kg bw LBP (LBP), UC treated with 12 mg/kg bw CAP (CAP), and UC treated with a combination of 50 mg/kg bw LBP and 6 mg/kg bw CAP (MIX) groups. The treatment of LBP and/or CAP was daily given by oral gavage from week 1 to week 4, and UC was induced by 5% DSS in drinking water for 6 days during week 3. Results The DSS group significantly increased disease activity index (DAI) scores, the levels of pro-inflammatory cytokines interleukin-6 (IL-6) in the serum and tumor necrosis factor-α (TNF-α) in the colon, and serum lipid peroxidation malondialdehyde (MDA) levels compared with the control group. While the activities of antioxidant enzymes such as superoxide dismutase (SOD) and catalase (CAT) in the serum were significantly decreased in the DSS group. The LBP, CAP, and MIX groups significantly decreased DAI scores on day 6 during the DSS-induced period. Compared with the DSS group, the LBP group significantly decreased serum IL-6 and serum MDA levels, but increased serum CAT activity. The CAP group significantly decreased serum IL-6 levels. The MIX group significantly reduced serum IL-6 and colon TNF-α levels, but elevated serum SOD activity. Conclusions The results suggest that administration of LBP and/or CAP attenuate DSS-induced UC symptoms in rats through the anti-inflammatory and antioxidant activities. Funding Sources This study was supported by the Ministry of Science and Technology, Taiwan (grant no. MOST 108–2320-B-038–052-MY3).


Author(s):  
Pelin Arda-Pirincci ◽  
Guliz Aykol-Celik

Ulcerative colitis is an inflammatory bowel disease and many people suffers from this disease across the word. Dextran sulfate sodium (DSS) is a synthetic sulfated polysaccharide that is used to produce ulcerative colitis in rodents. Galectin-1 is a β-galactoside binding animal lectin which plays key roles in many biological events. In this study, we investigated the role of galectin-1 on colon morphology, cell proliferation, oxidative stress, anti-oxidant system, inflammatory and anti-inflammatory mediators in the model of experimental ulcerative colitis induced by DSS in mice. C57BL/6  mice were fed orally 3% DSS in their drinking water for 5 days for acute colitis induction. Animals were injected with 1 mg/kg recombinant human galectin-1 for 7 consecutive days. Oral DSS application resulted in colitis injury by causing histopathological changes; an increase in disease activity index (DAI), lipid peroxidation (MDA), myeloperoxidase (MPO) and TNF-α levels; a decrease in body weight, colon length, cell proliferation index, catalase (CAT), glutahione peroxidase (GSH-Px) and superoxide dismutase (SOD) activities, gluathione (GSH) and IL-10 levels. However, treatment with galectin-1 prevented DSS-induced colitis injury through the reduction of DAI, MDA, MPO and TNF-α levels, and the increase of body weight, colon length, cell proliferation, antioxidant enzymes activities, GSH and IL-10 levels. As a result, this study showed that galectin-1 has proliferative, anti-oxidant, anti-inflammatory, and cytoprotective effects against DSS-induced colitis in mice. In addition, galectin-1 reduces the severity of ulcerative colitis via suppressing inflammatory and oxidative mediators.


2021 ◽  
Vol 12 ◽  
Author(s):  
Linghang Qu ◽  
Xiong Lin ◽  
Chunlian Liu ◽  
Chang Ke ◽  
Zhongshi Zhou ◽  
...  

In this study, we investigated the therapeutic effects and mechanism of atractylodin (ATL) on dextran sulfate sodium (DSS)-induced ulcerative colitis in mice. We found that atractylodin could significantly reverse the effects of DSS-induced ulcerative colitis, such as weight loss, disease activity index score; shorten the colon length, and reverse the pathological changes in the colon of mice. Atractylodin could inhibit the activation of colonic macrophages by inhibiting the MAPK pathway and alleviate intestinal inflammation in the mouse model of ulcerative colitis. Moreover, it could protect the intestinal barrier by inhibiting the decrease of the tight junction proteins, ZO-1, occludin, and MUC2. Additionally, atractylodin could decrease the abundance of harmful bacteria and increase that of beneficial bacteria in the intestinal tract of mice, effectively improving the intestinal microecology. In an LPS-induced macrophage model, atractylodin could inhibit the MAPK pathway and expression of the inflammatory factors of macrophages. Atractylodin could also inhibit the production of lactate, which is the end product of glycolysis; inhibit the activity of GAPDH, which is an important rate-limiting enzyme in glycolysis; inhibit the malonylation of GAPDH, and, thus, inhibit the translation of TNF-α. Therefore, ours is the first study to highlight the potential of atractylodin in the treatment of ulcerative colitis and reveal its possible mechanism.


Pharmacology ◽  
2019 ◽  
Vol 105 (1-2) ◽  
pp. 9-18 ◽  
Author(s):  
Yunxia Wang ◽  
Yunan Wang ◽  
Wanli Shen ◽  
Yandi Wang ◽  
Yini Cao ◽  
...  

Background: Ulcerative colitis (UC) is an inflammatory bowel disease. Its onset is typically gradual, usually followed by periods of spontaneous remission and subsequent relapses. Grape seed polyphenols (GSP), a natural product extracted from grape seeds, have strong anti-inflammatory functions. Objectives: In this study, we investigated whether GSP has an inhibitory effect on UC and its related mechanism or not. Methods: We induced UC by 2.5% dextran sulfate sodium (DSS) and GSP at different doses (500 and 750 mg/kg body weight per day) was administrated to the mice by gavage. Body weight, diarrhea, and bloody stool were recorded every day to evaluate disease activity index. Hemotoxylin-eosin staining and immunohistochemical staining were used to identify the histological damages and inflammatory infiltration in colon tissues. Real-time polymerase chain reaction was used to evaluate mRNA expression of interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α and the expression of phosphorylated-signal transducer and activator of transcription 3 (STAT3) and STAT3 were assessed by western blot. The immunofluorescent assay was used to evaluate the apoptosis of intestinal epithelial cells (IECs). Results: GSP could alleviate the loss of body weight, diarrhea, bloody stool, the mucosal damage, and inflammatory infiltration. GSP could also downregulate the mRNA expression of inflammatory cytokines IL-6, IL-1β, and TNF-α as well as the phosphorylation of STAT3 and ameliorate the apoptosis of IECs. Conclusions: Our study suggests that GSP has protective effects against DSS-induced UC, which may through suppression of inflammation and apoptosis.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Yunjuan Zhang ◽  
Lei Peng ◽  
Wenyun Li ◽  
Tianyi Dai ◽  
Long Nie ◽  
...  

Moringa oleifera Lam. is an essential herb used for the treatment of inflammation, diabetes, high blood pressure, and other diseases. In this study, phenolic extracts of M. oleifera leaves were obtained and analyzed. The results showed that the main identifiable phenols were astragalin, chlorogenic acid, isoquercitrin, kaempferitrin, luteolin, quercetin, and rutin. The effects of M. oleifera polyphenol extract (MOPE) on experimental colitis induced by 3% dextran sulfate sodium (DSS) were investigated. The results showed that oral administration of MOPE significantly alleviated the symptoms of DSS-induced colitis. MOPE significantly reduced weight loss, the disease activity index, colon shortening, and mucosal damage. In addition, MOPE attenuated the infiltration of CD3+ T cells, CD177+ neutrophils, and F4/80+ macrophages and significantly inhibited the secretion of IL-6 and TNF-α. After the MOPE administration, the expression of proteins associated with the NF-κB signaling pathway changed. Specifically, compared with that of the DSS group, the protein expression of NF-κB p65 and p-IκBα was downregulated, and the expression of IκBα was upregulated. This study revealed the anti-inflammatory effects and mechanisms of MOPE in the colon, indicating its potential use in preventing inflammation-driven diseases.


2020 ◽  
Vol 10 (2) ◽  
pp. 177-185
Author(s):  
Yoshiyuki Kimura

Background: The cortex of Mallotus japonicus (Euphorbiaceae) has traditionally been used to treat gastric ulcers, duodenal ulcers, and gastric hyperacidity in Japan. A large number of studies have recently focused on its effects on Inflammatory Bowel Disease (IBD). Objective: The aim of the present study was to examine the effects of M. japonicus (MJ) extracts on large intestinal diarrhea and inflammation using Inflammatory Bowel Disease (IBD) mouse models. Methods: The present study used 3% Dextran Sulfate Sodium (DSS)-treated colitis models. Red blood cell, platelet, and leukocyte counts in addition to hematocrit (Ht), hemoglobin (Hb), and colonic cytokine and chemokine levels were measured in DSS-treated C57BL/6J mice during the experimental period. Results: The Disease Activity Index (DAI) was lower in 3% DSS-treated mice orally administered MJ (200 and 500 mg/kg) than in mice administered 3% DSS only. Furthermore, MJ inhibited decreases in red blood cell and platelet counts as well as Hb and Ht levels in DSS-treated mice. Colon histology using direct fast scarlet staining revealed that MJ prevented mucosal membrane ulceration and eosinophil infiltration of the mucosal membrane induced by the DSS treatment. Increases in colonic Monocyte Chemoattractant Protein 1 (MCP)-1, interleukin (IL)-1β, and Tumor Necrosis Factor (TNF)-α levels in DSS-treated mice were reduced by orally administered MJ extracts. Conclusion: The present results suggest that M. japonicus cortex extracts are an effective treatment for IBD through the inhibition of increases in colonic IL-1β, TNF-α, and MCP-1 levels and eosinophil infiltration of the colon in DSS-treated mice.


2021 ◽  
Vol 8 ◽  
Author(s):  
Shalong Wang ◽  
Jingyu Zhou ◽  
Da Xiao ◽  
Guoshun Shu ◽  
Li Gu

Background: Ulcerative colitis is characterized by relapsing and remitting mucosal inflammation. Bovine lactoferrin (BL) is a multifunctional protein that could regulate the intestinal flora and has anti-inflammatory effects. The aim of this study was to investigate the therapeutic effect of BL on colitis.Methods: Dextran sulfate sodium salt (DSS) was utilized to establish a mouse model of colitis. BL was administered to treat DSS mice. The weight, the activity, and fecal status of the mice were recorded every day. Disease activity index was calculated. After the mice were euthanized, the colon length was measured. Hematoxylin and eosin staining was used to observe the pathological changes of the colon, and histological activity index was calculated. The myeloperoxidase (MPO) activity of colon tissue was measured. Western blot and immunohistochemistry were used to detect the expressions of Claudin-1, Occludin, and ZO-1. The expressions of IL-1β, IL-6, IL-10, TNF-α, and TGF-β in colon tissue were detected by ELISA. The protein expressions of MUC2, Reg3γ, β-defensin (HBD-2), and cAMP were detected by immunofluorescence (IF). 16S rDNA sequencing determined the type and structure of intestinal flora. Liquid chromatography–tandem mass spectrometry (LC-MS/MS) measured the metabolites of the intestinal flora.Results: Compared with the DSS group, the mice's weight in the BL group was higher and the length of the colon was longer. At the 14th day, MPO activity was higher in the BL group. The expressions of Claudin-1, Occludin, and ZO-1 in the colon were up-regulated in the BL group compared with the DSS group. The expressions of IL-1β, IL-6, and TNF-α were lower. The expressions of IL-10 and TGF-β were higher. IF showed that the expressions of MUC2 and β-defensin (HBD-2) were down-regulated, and the expressions of Reg3γ and cAMP were up-regulated. The 16S rDNA sequencing results showed that the alpha diversity and beta diversity were notably changed in the DSS mice treated with BL. Metabolomics results showed that BL changed purine metabolism in the DSS mice.Conclusion: BL alleviated colitis in mice by improving the inflammatory response and the structure of the colon barrier in the colon. BL changed the composition and metabolites of the intestinal flora. Thus, BL might be an effective nutritional supplement for colitis treatment.


Sign in / Sign up

Export Citation Format

Share Document