Formulation and Evaluation of Atenolol Nanocrystals Using 3(2) Full Factorial Design

2020 ◽  
Vol 10 (3) ◽  
pp. 306-315
Author(s):  
Rupa Mazumder ◽  
Swarnali Das Paul

Background: Atenolol is a commonly used antihypertensive drug of class III BCS category. It suffers from the problem of poor intestinal absorption or permeability thus low bioavailability. The objective of the present study was to enhance the permeability of atenolol by using a suitable technique, which is economical and devoid of using any organic solvent. Methods: The nanocrystal technology by high-pressure homogenization was chosen for this purpose, which is a less expensive and simple method. In this technique, no organic solvent was used. The study was further aimed to characterize prepared nanocrystals in the solid state by Fourier Transform Infrared Spectroscopy (FTIR), Powder X-Ray Diffraction (PXRD) patterns, particle size, zeta potential, %yield and drug permeation study through isolated goat’s intestine. An in-vivo study was carried out to determine the pharmacokinetic property in comparison to pure drug powder using rats as experimental animals. The formulation design was optimized by a 3(2) factorial design. In these designs, two factors namely surfactant amount (X1) and speed of homogenizer (X2) were evaluated on three dependent variables namely particle size (y1), zeta potential (y2) and production yield (y3). Results: PXRD study indicated the presence of high crystal content in the prepared formulation. These nanocrystal formulations were found with a narrow size range from 125 nm to 652 nm and positive zeta potential of 16-18 mV. Optimized formulations showed almost 90% production yield. Permeability study revealed 90.88% drug release for optimized formulation in comparison to the pure drug (31.22%). The FTIR study also exposed that there was no disturbance in the principal peaks of the pure drug atenolol. This confirmed the integrity of the pure drug and its compatibility with the excipients used. A significant increase in the area under the concentration-time curve Cpmax and MRT for nanocrystals was observed in comparison to the pure drug. The higher values of the determination coefficient (R2) of all three parameters indicated the goodness of fit of the 3(2) factorial model. The factorial analysis also revealed that speed of homogenizer had a bigger effect on particle size (-0.2812), zeta potential (-0.0004) and production yield (0.0192) whereas amount of surfactant had a lesser effect on production yield (-370.4401), zeta potential (-43.3651) as well as particle size (-6169.2601). Conclusion: It is concluded that the selected method of nanocrystal formation and its further optimization by factorial design was effective to increase the solubility, as well as permeability of atenolol. Further, the systematic approach of factorial design provides rational evaluation and prediction of nanocrystals formulation on the selected limited number of smart experimentation.

Author(s):  
Rupali L. Shid ◽  
Shashikant N. Dhole ◽  
Nilesh Kulkarni ◽  
Santosh L Shid

Poor water solubility and slow dissolution rate are issues for the majority of upcoming and existing biologically active compounds. Simvastatin is poorly water-soluble drug and its bioavailability is very low from its crystalline form. The purpose of this study wasto increase the solubility and dissolution rate of simvastatin by the  preparation of nanosuspension by emulsification solvent diffusion method at laboratory scale. Prepared nanosus-pension was evaluated for its particle size and in vitro dissolution study and characterized by zeta potential,differential scanning calorimetry (DSC) and X-Ray diffractometry (XRD), motic digital microscopy, entrapment efficiency, total drug content, saturated solubility study and in vivo study. A 23 factorial design was employed to study the effect of independent variables, amount of SLS (X1), amount of PVPK-30 (X2) and poloxamer-188 (X3) and dependent variables are total drug content and polydispersity Index. The obtained results showed that particle size (nm) and rate of dissolution has been improved when nanosuspension prepared with the higherconcentration of PVPK-30 with the higher concentration of PVP K-30 and Poloxamer-188 and lower concentration of SLS. The particle size and zeta potential of optimized formulation was found to be 258.3 nm and 23.43. The rate of dissolution of the optimized nanosuspension was enhanced (90% in 60min), relative to plain simvastatin  (21% in 60 min), mainly due to the formation of nanosized particles. These results indicate the suitability of 23 factorial  design for preparation of simvastatin loaded nano-suspension significantly improved in vitro dissolution rate and thus possibly enhance fast onset of therapeutic drug effect. In vivo study shows increase in bioavailability in nanosuspension formulation than the plain simvastatin drug.


Author(s):  
Sanjeevani S Deshkar ◽  
Kiran G Sonkamble ◽  
Jayashri G Mahore

Objective: The study aims at the formulation and optimization of gemfibrozil (Gem) nanosuspension (NS) for improving its solubility and dissolution rate.Method: Gem NS was prepared by precipitation-ultrasonication method using ethanol as solvent, water as anti-solvent, and polyvinyl alcohol (PVA) as a stabilizer. A Box–Behnken design was employed to study the effect of the independent variables, Gem concentration in the organic phase (X1), PVA concentration (X2) and sonication time (X3) on the dependent variable, drug release after 90 min (Y). The resulting data were statistically analyzed and subjected to 3D response surface methodology to study the influence of variables on the response. NS was evaluated for particle size, zeta potential, solubility and in vitro drug release and characterized using Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and X-ray diffractometry (XRD).Results: On the basis of the evaluation, NS4 formulation (with 80 mg/ml Gem, 0.5% PVA concentration, and 20 min of sonication time) demonstrated highest drug content with a particle size of 191.0 nm and zeta potential of −12.0 mV. Dissolution profiles of NS indicated 2.5-fold increase in drug release than pure drug. NS demonstrated 5- and 9-fold increase in solubility, in water, and phosphate buffer (pH 7.5), respectively, pure drug. DSC and XRD studies indicated changes in the crystallinity of Gem during NS formulation. No chemical change was evident in NS as indicated by FTIR.Conclusion: Gem NS formulation could serve as a promising approach for improving its solubility and dissolution rate.


2017 ◽  
Vol 10 (2) ◽  
pp. 58 ◽  
Author(s):  
Kun Tanti Dewandari ◽  
Sri Yuliani ◽  
Sedarnawati Yasni

<p>Sirih merah merupakan salah satu tanaman obat yang dapat dimanfaatkan sebagai minuman fungsional, karena mengandung senyawa fitokimia dari golongan alkaloid, flavonoid, dan tanin yang berkhasiat sebagai antihiperglikemik dan antioksidan. Salah satu kelemahan dalam penyerapan bahan aktif adalah bioavaibilitasnya yang rendah. Salah satu teknologi yang dapat digunakan adalah teknologi nano. Tujuan penelitian ini adalah melakukan ekstraksi sirih merah, sintesis nanopartikel dan karakterisasinya serta mengetahui stabilitasnya pada beberapa kondisi pH. Hasil penelitian menunjukkan bahwa ekstraksi etanol 96% dengan maserasi memberikan hasil yang terbaik dengan rendemen 7,2 ± 0,25%, kapasitas antioksidan 10892,86 ± 6,06 AAE?g/ml, IC 50 sebesar 46,51 ± 0,05 AAE?g/ml serta total fenol 2388,37 ± 0,3 mg/100g dengan komponen volatil utama yaitu sabinen dan mirsen. Konsentrasi kitosan 0,2% dengan rata-rata diameter 197,20 ± 11,68 nm memberikan hasil yang terbaik dengan nilai IP 0,235 ± 0,03, zeta potensial 32,75 ± 2,11 mV, kapasitas antioksidan 5502,00 ± 8,48 AAE?g/ml, nilai IC 50 yaitu 279,10 ± 0,05 AAE?g/ml dan total fenol 568,76 ± 3,0 mg/100g. Enkapsulasi nanopartikel dengan penyalut campuran maltodekstrin dan isolat protein menunjukkan terjadi peningkatan ukuran partikel dimana dengan pengisi maltodekstrin (M) sebesar 8952,7 ± 2598 nm dan campuran maltodekstrin dan isolat protein kedelai sebesar 8266,9 ± 1134,9 nm. Stabilitas pada beberapa kondisi pH menunjukkan bahwa penurunan persentase total fenol terbesar pada pH basa (6,7, dan 8) dibandingkan pada kondisi pH asam (2,3 dan 4).</p><p>Kata kunci :ekstraksi, antioksidan, daun sirih merah, nanopartikel</p><p>English Version Abstract</p><p>Red betel, a medicinal plant containing alcaloids, flavonoids and tannins, has health benneficial effects as antihyperglycemics and antioxidants. However, its low bioavailablity limit the applications of this extract for nutraceuticals. Transformation of extract into nanoparticles through ionic gelation process was done to enhance its bioavailability. This study is aimed at extracting the active ingredients of red betel leaves using organic solvent, preparing nanoparticles, and characterizing their properties including their stability at different pHs. The study showed the highest yield of red betel leaves extract was observed in the extraction using ethanol 96% (7.2 ± 0,25%) with the capacity of antioxidant of 10892.86 ± 6.06 AAE?g/ml, the IC 50 of 46.51 ± 0.05 AAE?g/ml, the total phenol of 2388.37 ± 0.3 mg/100g and the major volatile compounds of sabinene dan myrcene. Chitosan at a concentration of 0.2% produced nanoparticle size of 197.20 ± 11.68 nm with PDI 0,235 ± 0,03, zeta potential 32.75 ± 2.11mV, antioxidant capacity 5502.00 ± 8.48 AAE?g/ml, nilai IC 50 yaitu 279,10 ± 0,05 AAE?g/ml dan total fenol 568,76 ± 3,0 mg/100g. Encapsulation of nanoparticles using maltodextrin and protein isolates resulted in increases in particle size, in which maltodextrin gave slightly largle particles (8952.7 ± 2598 nm) than did combination of maltodextrin and soy proten isolate (8266.9 ± 1134.9 nm). Nanoparticles at pHs of 6, 7 and 8 exhibited larger decreases in total phenol as compared to that at lower pHs (2, 3, and 4).</p><p>Keywords : extraction, antioxidant, red betel leaves, nanoparticles</p>


Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 772 ◽  
Author(s):  
Hazem Abdul Kader Sabbagh ◽  
Samer Hasan Hussein-Al-Ali ◽  
Mohd Zobir Hussein ◽  
Zead Abudayeh ◽  
Rami Ayoub ◽  
...  

The goal of this study was to develop and statistically optimize the metronidazole (MET), chitosan (CS) and alginate (Alg) nanoparticles (NP) nanocomposites (MET-CS-AlgNPs) using a (21 × 31 × 21) × 3 = 36 full factorial design (FFD) to investigate the effect of chitosan and alginate polymer concentrations and calcium chloride (CaCl2) concentration ondrug loading efficiency(LE), particle size and zeta potential. The concentration of CS, Alg and CaCl2 were taken as independent variables, while drug loading, particle size and zeta potential were taken as dependent variables. The study showed that the loading efficiency and particle size depend on the CS, Alg and CaCl2 concentrations, whereas zeta potential depends only on the Alg and CaCl2 concentrations. The MET-CS-AlgNPs nanocomposites were characterized by X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), scanning electron microscopy (SEM) and in vitro drug release studies. XRD datashowed that the crystalline properties of MET changed to an amorphous-like pattern when the nanocomposites were formed.The XRD pattern of MET-CS-AlgNPs showed reflections at 2θ = 14.2° and 22.1°, indicating that the formation of the nanocompositesprepared at the optimum conditions havea mean diameter of (165±20) nm, with a MET loading of (46.0 ± 2.1)% and a zeta potential of (−9.2 ± 0.5) mV.The FTIR data of MET-CS-AlgNPs showed some bands of MET, such as 3283, 1585 and 1413 cm−1, confirming the presence of the drug in the MET-CS-AlgNPs nanocomposites. The TGA for the optimized sample of MET-CS-AlgNPs showed a 70.2% weight loss compared to 55.3% for CS-AlgNPs, and the difference is due to the incorporation of MET in the CS-AlgNPs for the formation of MET-CS-AlgNPs nanocomposites. The release of MET from the nanocomposite showed sustained-release properties, indicating the presence of an interaction between MET and the polymer. The nanocomposite shows a smooth surface and spherical shape. The release profile of MET from its MET-CS-AlgNPs nanocomposites was found to be governed by the second kinetic model (R2 between 0.956–0.990) with more than 90% release during the first 50 h, which suggests that the release of the MET drug can be extended or prolonged via the nanocomposite formulation.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
K. Narayanan ◽  
V. M. Subrahmanyam ◽  
J. Venkata Rao

The present study was initiated to understand the effect of PLGA concentration, PVA concentration, internal-external phase ratio, homogenization speed, and homogenization time on mean particle size, zeta potential, and percentage drug encapsulation using fractional factorial design. Using PLGA (50-50) as the carrier, hyaluronidase loaded PLGA nanoparticles were prepared using double emulsion solvent evaporation technique. The particle size was analyzed by dynamic light scattering technique and protein content by Lowry method. The study showed that homogenization speed as an independent variable had maximum effect on particle size and zeta potential. Internal-external phase volume ratio had maximum effect on drug encapsulation. Mean particle size also had high dependency on the combined effect of PVA concentration and phase volume ratio. Using fractional factorial design particle size of <400 nm, zeta potential of <−30 mV, and percentage encapsulation of 15–18% were achieved.


Author(s):  
Sanjeevani S Deshkar ◽  
Kiran G Sonkamble ◽  
Jayashri G Mahore

Objective: The study aims at the formulation and optimization of gemfibrozil (Gem) nanosuspension (NS) for improving its solubility and dissolution rate.Method: Gem NS was prepared by precipitation-ultrasonication method using ethanol as solvent, water as anti-solvent, and polyvinyl alcohol (PVA) as a stabilizer. A Box–Behnken design was employed to study the effect of the independent variables, Gem concentration in the organic phase (X1), PVA concentration (X2) and sonication time (X3) on the dependent variable, drug release after 90 min (Y). The resulting data were statistically analyzed and subjected to 3D response surface methodology to study the influence of variables on the response. NS was evaluated for particle size, zeta potential, solubility and in vitro drug release and characterized using Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and X-ray diffractometry (XRD).Results: On the basis of the evaluation, NS4 formulation (with 80 mg/ml Gem, 0.5% PVA concentration, and 20 min of sonication time) demonstrated highest drug content with a particle size of 191.0 nm and zeta potential of −12.0 mV. Dissolution profiles of NS indicated 2.5-fold increase in drug release than pure drug. NS demonstrated 5- and 9-fold increase in solubility, in water, and phosphate buffer (pH 7.5), respectively, pure drug. DSC and XRD studies indicated changes in the crystallinity of Gem during NS formulation. No chemical change was evident in NS as indicated by FTIR.Conclusion: Gem NS formulation could serve as a promising approach for improving its solubility and dissolution rate.


Folia Medica ◽  
2017 ◽  
Vol 59 (3) ◽  
pp. 310-317 ◽  
Author(s):  
Plamen D. Katsarov ◽  
Bissera A. Pilicheva ◽  
Hristo M. Manev ◽  
Paolina K. Lukova ◽  
Margarita I. Kassarova

AbstractBackground:Generally, the preparation of spray-dried microspheres is strongly affected by the process parameters. Particle size and production yield are mainly influenced by the spraying solution concentration and the pump rate of the spray dryer.Aim:The aim of this study was to assess optimum spray drying parameters - polymer concentration and pump rate required for the production of chitosan microspheres with high production yield and targeted for nasal administration particle size.Materials and methods:Full 32factorial design was used to study the investigated parameters. Three different concentrations of the chitosan solution were selected: a low concentration of 1%, average concentration of 1.5% and high concentration of 2%. The rate of the peristaltic pump was also varied at three levels: low rate of 10%, medium rate of 14% and high rate of 18%.Results:Nine models of chitosan microspheres were formulated and characterized in terms of shape, surface morphology, size, particle size distribution and production yield. The particles obtained from 2% chitosan solutions, sprayed at 10% pump rate were of the highest yield (64.33%) and appropriate for nasal administration median diameter (3,434 μm).Conclusion:The two investigated spray-drying parameters interact with each other and their influence on the production yield and the size of the chitosan microspheres should be evaluated together, instead of one at a time. The assessed process parameters allow the production of chitosan microparticles with high yield and desirable characteristics (size, size distribution and shape) for intranasal delivery.


Author(s):  
Aline Krindges ◽  
Vanusca Dalosto Jahno ◽  
Fernando Morisso

Incorporation studies of particles in different substrates with herbal assets growing. The objective of this work was the preparation and characterization of micro/nanoparticles containing cymbopogon nardus essential oil; and the incorporation of them on bacterial cellulose. For the development of the membranes was used the static culture medium and for the preparation of micro/nanoparticles was used the nanoprecipitation methodology. The incorporation of micro/nanoparticles was performed on samples of bacterial cellulose in wet and dry form. For the characterization of micro/nanoparticles were carried out analysis of SEM, zeta potential and particle size. For the verification of the incorporation of particulate matter in cellulose, analyses were conducted of SEM and FTIR. The results showed that it is possible the production and incorporation of micro/nanoparticles containing essential oil in bacterial cellulose membranes in wet form with ethanol.


Author(s):  
Kranti Singh ◽  
Surajpal Verma ◽  
Shyam Prasad ◽  
Indu Bala

Ciprofloxacin hydrochloride loaded Eudragit RS100 nanoparticles were prepared by using w/o/w emulsification (multiple emulsification) solvent evaporation followed by drying of nanoparticles at 50°C. The nanoparticles were further incorporated into the pH-triggered in situ gel forming system which was prepared using Carbopol 940 in combination with HPMC as viscosifying agent. The developed nanoparticles was evaluated for particle size, zeta potential value and loading efficiency; nanoparticle incorporated in situ gelling system was evaluated for pH, clarity, gelling strength, rheological studies, in-vitro release studies and ex-vivo precorneal permeation studies. The nanopaticle showed the mean particle size varying between 263.5nm - 325.9 nm with the mean zeta potential value of -5.91 mV to -8.13 mV and drug loading capacity varied individually between 72.50% to 98.70% w/w. The formulation was clear with no suspended particles, showed good gelling properties. The gelling was quick and remained for longer time period. The developed formulation was therapeutically efficacious, stable and non-irritant. It provided the sustained release of drug over a period of 8-10 hours.


2020 ◽  
Vol 26 (14) ◽  
pp. 1543-1555 ◽  
Author(s):  
Meltem E. Durgun ◽  
Emine Kahraman ◽  
Sevgi Güngör ◽  
Yıldız Özsoy

Background: Topical therapy is preferred for the management of ocular fungal infections due to its superiorities which include overcoming potential systemic side effects risk of drugs, and targeting of drugs to the site of disease. However, the optimization of effective ocular formulations has always been a major challenge due to restrictions of ocular barriers and physiological conditions. Posaconazole, an antifungal and highly lipophilic agent with broad-spectrum, has been used topically as off-label in the treatment of ocular fungal infections due to its highly lipophilic character. Micellar carriers have the potential to improve the solubility of lipophilic drugs and, overcome ocular barriers. Objective: In the current study, it was aimed optimization of posaconazole loaded micellar formulations to improve aqueous solubility of posaconazole and to characterize the formulations and to investigate the physical stability of these formulations at room temperature (25°C, 60% RH), and accelerated stability (40°C, 75% RH) conditions. Method: Micelles were prepared using a thin-film hydration method. Pre-formulation studies were firstly performed to optimize polymer/surfactant type and to determine their concentration in the formulations. Then, particle size, size distribution, and zeta potential of the micellar formulations were measured by ZetaSizer Nano-ZS. The drug encapsulation efficiency of the micelles was quantified by HPLC. The morphology of the micelles was depicted by AFM. The stability of optimized micelles was evaluated in terms of particle size, size distribution, zeta potential, drug amount and pH for 180 days. In vitro release studies were performed using Franz diffusion cells. Results: Pre-formulation studies indicated that single D-ɑ-tocopheryl polyethylene glycol succinate (TPGS), a combination of it and Pluronic F127/Pluronic F68 are capable of formation of posaconazole loaded micelles at specific concentrations. Optimized micelles with high encapsulation efficiency were less than 20 nm, approximately neutral, stable, and in aspherical shape. Additionally, in vitro release data showed that the release of posaconazole from the micelles was higher than that of suspension. Conclusion: The results revealed that the optimized micellar formulation of posaconazole offers a potential approach for topical ocular administration.


Sign in / Sign up

Export Citation Format

Share Document