scholarly journals Nanocluster Structure of Pistacia atlantica subsp. Kurdica Turpentine and Its Antibacterial Effects

2020 ◽  
Vol 18 ◽  
Author(s):  
Ramyar Rahimi Darehbagh ◽  
Rojin Ramezani ◽  
Afra Hosseinpanahi ◽  
Ahmad Fotoohi ◽  
Samaneh Rouhi

Background: Medicinal herbs such as Pistacia atlantica (P. atlantica) subsp. Kurdica have antimicrobial effects. The present study is aimed to investigate the nanocluster structure of P. atlantica subsp. Kurdica turpentine and its composing elements and antibacterial effect. Methods: 100 μl ethanol was used to dissolve oily turpentine. 2, 2.2, 2.4, and 2.6 µg/μl of turpentine were used for investigating the antibacterial effects using disk and well diffusion methods. Elemental and nanocluster structure analyses were performed by Energy-Dispersive XRay Microanalysis (EDXMA) and Field Emission (FE)-scanning electron. Two-way analysis of variance (ANOVA) and Bonferoni test were used for data analysis (p ≤ 0.001). Results and Discussion: EDXMA elemental analysis of turpentine included: zinc (Zn), magnesium (Mg), fluorine (F), oxygen (O), silicium (Si), carbon (C), and argentum (Ag). A topography image of the turpentine showed a nanocluster surface with bright clusters in the background. The largest diameters of the growth inhibition zones (24.67 ± 0.58 mm in the disk diffusion and 23.67 ± 1.53 mm in the well diffusion) that were created by turpentine were observed against S. aureus ATCC 25923 at the concentration of 2.6 µg/μl. Diameter of the inhibition zone around bacterial growth had a direct relationship with turpentine concentration (p ≤ 0.001). Conclusion: The nanocluster structure of turpentine and its composed elements were detected in this research. Moreover, antibacterial effects of turpentine were proved. Herbal substances are widely used in medical applications. Different elements of P. atlantica subsp. Kurdica turpentine can be used as antibacterial agents, but more in-vitro and in-vivo studies should be performed in this field.

Author(s):  
EHAN ABDULHADI AL-SHARIFI ◽  
ASIA ABED AL-MAHMOOD ◽  
SUMAYAH AL-MAHMOOD

Objective: The aim is to estimate the effect of curcumin and rosemary as antibacterial agents among dental caries cases. Methods: Samples of saliva were randomly collected from 40 patients in Al-Furat General Hospital who attended the hospital from July to September 2018. Swabs were cultured on blood agar at 37°C for 24 h and then subcultured in mannitol salt agar and trypticase soy broth at 37°C for 24 h. Different concentrations of aqueous extract curcumin solution (0.1, 0.3, 0.5, and 1 mg/ml) and rosemary solution (1 g/ml) were prepared and added to the bacterial culture. Later, minimum inhibition zones of the bacterial cultures were determined. Results: The results showed that there were 25 cases of Streptococcus mutans, 10 cases of Staphylococcus aureus, 3 cases of anaerobic bacteria, and 2 cases of normal flora among 40 culturing swabs of bacteria. Aqueous extract of curcumin showed antibacterial effect with concentrations (0.1, 0.3, 0.5, and 1 mg/ml) against oral bacteria; nevertheless, these bacteria were resistant to the aqueous extract of rosemary with concentration 1 g/ml. Conclusion: It can be concluded that curcumin can be an effective antibacterial agent against dental caries disease and its effect increases positively in relation to its concentration. On the other hand, rosemary with 1 g/ml concentration did not show any effect on oral bacteria.


Author(s):  
A. Kidanemariam ◽  
J. Gouws ◽  
M. Van Vuuren ◽  
B. Gummow

The in vitro activities of enrofloxacin, florfenicol, oxytetracycline and spiramycin were determined against field isolates of Mycoplasma mycoides mycoides large colony (MmmLC) by means of the broth microdilution technique. The minimum inhibitory concentrations (MICs) of these antimicrobial drugs were determined for a representative number of 10 isolates and 1 type strain. The susceptibility of Arcanobacterium pyogenes to enrofloxacin, oxytetracycline and tilmicosin was determined by means of an agar disk diffusion test. The MICs of enrofloxacin, florfenicol, oxytetracycline and spiramycin were within the ranges of 0.125-0.5, 1.0-2.0, 2.0-4.0 and 4.0-8.0 µg / m , respectively. This study has shown that resistance of MmmLC against enrofloxacin, florfenicol, oxytetracycline and spiramycin was negligible. All the field strains of A. pyogenes that were tested were susceptible to enrofloxacin, oxytetracycline and tilmicosin with mean inhibition zones of 30.6, 42.3 and 35.8mm, respectively. Although there is lack of data on in vivo efficacy and in vitro MIC or inhibition zone diameter breakpoints of these antimicrobial drugs for MmmLC, the MIC results indicate that these 4 classes of antimicrobial drugs should be effective in the treatment of ulcerative balanitis and vulvitis in sheep in South Africa.


2020 ◽  
Vol 14 (1) ◽  
pp. 113-119 ◽  
Author(s):  
Lisda Damayanti ◽  
Ida Ayu Evaangelina ◽  
Avi Laviana ◽  
Yetty Herdiyati ◽  
Dikdik Kurnia

Background: Caries and periodontitis are dental diseases caused by bacteria of S. sanguinis, S. mutans, and E. faecalis with three main etiological factors of the host, substrate, and time. Objective: This study proposed to investigate the antibacterial effects of Buah Merah (Pandanus conoideus Lam.) against oral bacteria of E.faecalis, S. mutans, and S. sanguinis. Materials and Methods: The Buah Merah was extracted with different solvents to yield n-hexane, ethyl acetate, methanol, and H2O extracts. The concentrations of single and mixture extracts were adjusted for antibacterial assay against bacteria of E. faecalis, S. mutans, and S. sanguinis strains through agar well diffusion assay with chlorhexidine, fosfomycin, and quercetin used as positive controls. Results: The ethyl acetate extract showed highest antibacterial activity against three oral bacterial of E. faecalis, S. mutans, and S. sanguinis with inhibition zones values of 9.3, 12.3, and 17.9 mm at 40%, respectively, together with their MIC and MBC values of 1250 & 2500, 0.312 & 0.625, and 0.312 & 0.625 ppm, respectively. For the formulation of extracts, combinations samples test gave various effects to different bacteria, with the best activity showed by methanol-ethyl acetate (M-Ea) extracts against S. mutans with an inhibition zone of 16.25 mm at 40 ppm. The strong and synergistic effect of methanol extract against S. mutans was supported by inhibition zones of the formulation of methanol extract-fosfomycin which showed an inhibition zone of 25.9 mm at 10 ppm. Conclusion: The extracts of Buah Merah demonstrated antibacterial activity against oral bacteria of E. faecalis, S. mutans, and S. sanguinis and gave important information for further in vivo clinical studies to determine the exact dosages and its effectiveness in practical application. These results prove the antimicrobial effects of Buah Merah extracts as alternative natural drugs with synergistic effects of active constituents.


HortScience ◽  
2020 ◽  
Vol 55 (7) ◽  
pp. 988-994
Author(s):  
Jacqueline Joshua ◽  
Margaret T. Mmbaga

Fungi isolated from snap bean roots and rhizosphere soil where fungicides are not used included Fusarium oxysporum, Fusarium equiseti, Fusarium subglutinans, Fusarium camptoceras, Fusarium chlamydosporum, Fusarium verticillioides, Fusarium proliferatum, Fusarium acuminatum, Fusarium solani, Peyronellaea pinodella, Macrophomina phaseolina, and Glomerella guttata. Only P. pinodella, M. phaseolina, and F. oxysporum were isolated on symptomatic plants. These soilborne fungi are common pathogens of diverse host plants. Pathogenicity tests under controlled environment demonstrated that these fungi were pathogenic on snap beans. Subsequently, bacterial endophytes isolated from snap bean roots, papaya roots and stems, and dogwood stems were evaluated as potential biological control agents against these diverse fungi. All bacteria isolated, including Bacillus vallismortis (PS), Bacillus amyloliquefaciens (Psl), Bacillus subtilis (Prt), Bacillus thuringiensis (Y and IMC8), Enterobacter sp. (E), Stenotrophomonas sp. (B17A), and Serratia sp. (B17B) suppressed growth of the fungal pathogens in vitro and formed clear inhibition zones in petri dish dual cultures. Growth media taken from the inhibition zones suppressed growth of the fungal pathogens in the absence of the bacterial cells, suggesting that the bacteria released unidentified antagonistic biochemical substances into the media. This study constitutes an initial screening of endophytes as biological control agents against diverse fungal pathogens and forms a basis for the discovery of novel strains that can be further developed and integrated into disease management systems for diverse fungal pathogens. Isolates B. vallismortis (PS), B. amyloliquefaciens (Psl), B. subtilis (Prt), and B. thuringiensis (Y IMC8) exhibited the best performance as potential biological control agents paving the way for larger-scale in vivo studies and characterization of their interactions with fungal pathogens.


2021 ◽  
Vol 11 (3) ◽  
pp. 183-187
Author(s):  
Mulyadi Djojosaputro ◽  
Moskwadina Gultom

Honey is one of the natural treatments with antibacterial effects such as hydrogen peroxide, low pH and short water activity that may inhibit bacterial growth. This study aimed to determine the activity of honey as antibacterial to bacteria Escherichia coli. Antibacterial activity test was done in vitro through diffusion method by using disk disc in MHA media then measuring the diameter of a clear zone that inhibition zone form growth of Escherichia coli bacteria and scaled it millimetre unit. This research was done in the laboratory of the Faculty of Medicine Universitas Kristen Indonesia. The concentrations used are 10%, 30%, 50%, 70%, 100% by using sterile equates as honey diluents. The control used was chloramphenicol, the results obtained at a concentration of 10% with a zone of 7.6 mm inhibition of honey had been able to inhibit the growth of Escherichia coli bacteria, and the optimum concentration was 100% with a zone of 24.5 mm. This test showed that natural honey could inhibit bacteria, which conclude that honey might be used as alternative medicine in society. Keywords: Antibacterial effect, Escherichia coli, honey


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hamada H. Amer ◽  
Essam Hassan Eldrehmy ◽  
Salama Mostafa Abdel-Hafez ◽  
Youssef Saeed Alghamdi ◽  
Magdy Yassin Hassan ◽  
...  

AbstractA new series of nucleosides, moieties, and Schiff bases were synthesized from sulfadimidine. Infrared (IR), 1HNMR, 13C NMR, and mass spectrometry techniques and elemental analysis were employed to elucidate the synthesized compounds. The prepared analogues were purified by different chromatographic techniques (preparative TLC and column chromatography). Molecular docking studies of synthesized compounds 3a, 4b, 6a, and 6e demonstrated the binding mode involved in the active site of DNA gyrase. Finally, all synthesized compounds were tested against selected bacterial strains. The most effective synthesized compounds against S. aureus were 3a, 4d, 4b, 3b, 3c, 4c, and 6f, which exhibited inhibition zones of inhibition of 24.33 ± 1.528, 24.67 ± 0.577, 23.67 ± 0.577, 22.33 ± 1.528, 18.67 ± 1.528 and 19.33 ± 0.577, respectively. Notably, the smallest zones were observed for 4a, 6d, 6e and 6g (6.33 ± 1.528, 11.33 ± 1.528, 11.67 ± 1.528 and 14.66 ± 1.155, respectively). Finally, 6b and 6c gave negative zone values. K. pneumoniae was treated with the same compounds and the following results were obtained. The most effective compounds were 4d, 4c, 4b and 3c, which showed inhibition zones of 29.67 ± 1.528, 24.67 ± 0.577, 23.67 ± 1.155 and 19.33 ± 1.528, respectively, followed by 4a and 3d (15.33 ± 1.528 for both), while moderate results (13.67 ± 1.155 and 11.33 ± 1.528) were obtained for 6f and 6g, respectively. Finally, 6a, 6b, 6c, 3a, and 3b did not show any inhibition. The most effective compounds observed for the treatment of E. coli were 4d, 4b, 4c, 3d, 6e and 6f (inhibition zones of 26.33 ± 0.577, 21.67 ± 1.528, 21.67 ± 1.528, 19.67 ± 1.528, 17.67 ± 1.155 and 16.67 ± 1.155, respectively). Compounds 3b, 3c, 6a, 6c, and 6g gave moderate results (13.67 ± 1.528, 12.67 ± 1.528, 11.33 ± 0.577, 15.33 ± 1.528 and 12.67 ± 1.528, respectively), while 6b showed no effect. The MIC values against S. aureus ranged from 50 to 3.125 mg, while those against E. coli and K. pneumoniae ranged from 50 to 1562 mg. In vitro, the antibacterial effects were promising. Further research is required to study the in vivo antibacterial effects of these compounds and determine therapeutic doses.


Author(s):  
Mohammad Mahdi Zangeneh ◽  
Fariba Najafi ◽  
Reza Tahvilian ◽  
Akram Zangeneh ◽  
Rohallah Moradi

Scrophularia striata (S. striata) is a native plant in Iran, which the plant has been used as an antioxidant, antifungal, antiviral, and antiflammatory agent in Iran. Based on knowledge of authors, as we know, there is low documented proof on antibacterial properties of S. striata hydroalcoholic extract against Staphylococcus aureus (S. aureus) (ATCC No. 25923) in west of Iran. As a screen test to discover antibacterial properties of the extract, agar disk and agar well diffusion methods were employed. Macrobroth tube test was performed to specify MIC. The results of agar disk and agar well diffusion tests showed S. striata have prevented the growth of S. aureus and destroyed it. Also, by increasing the concentration of S. striata, the inhibition zone in many of samples increased. The MIC and MBC value was 0.031 g/ml for S. striata. This study confirmed the antibacterial effects of the S. striata on S. aureus. Additional in vivo studies and clinical trials would be needed to justify and further evaluate the potential of the plant as an antibacterial agent in topical or oral applications.


2019 ◽  
Vol 1 (4) ◽  
pp. 270-280
Author(s):  
Hai Thanh Nguyen ◽  
Trang Hoang Dang ◽  
Thanh Hà Thi Nguyen

Bacterial rice leaf blight (BLB), caused by Xanthomonas oryzae pv. oryzae (Xoo), has a massive impact on the quality and productivity of rice. Besides BLB resistant rice cultivars, herbal extracts and nanosilver have increasingly demonstrated their important roles in controlling the disease as alternatives to synthetic chemical pesticides. Therefore, this research aimed to examine the Xoo antibacterial effects of several herbal extracts and nanosilver in vitro and in vivo. In the study, Wedelia chinensis Osbeck Merr., Clerodendrum fragrans Vent., Excoecaria cochinchinensis Lour., Polyathia longifolia var. Pendula, and Caesalpinia sappan L. were extracted by maceration with six types of solvents (distilled water, 70% ethanol, chloroform, n-hexane, and 100% acetonitrile), then used in an agar diffusion test to evaluate their Xoo antibacterial effects. The results showed that 70% ethanol was the best extracting solvent for the targeted plants. C. fragrans, E. Cochinchinensis, and C. sappan showed significant antibacterial effects with inhibition zone diameters of 28.50 cm, 21.00 cm, and 25.70 cm, respectively. Finally, the individual extract from C. fragrans, E. Cochinchinensis, and C. sappan were combined with nanosilver particles and used to access BLB inhibition capacity in vivo, using the rice cultivar IR24 as the target for Xoo infection. Application of the C. fragrans extract resulted in resistance of IR24 rice to BLB. Similar results were also observed in the infected rice when products combining nanosilver and E. cochinchinensis or C. sappan were applied to infected rice leaves.


Sign in / Sign up

Export Citation Format

Share Document