Exploration of Physicochemical Parameters of Natural Origin Polymers

2021 ◽  
Vol 04 ◽  
Author(s):  
Chaitrali M Bidikar ◽  
Poonam R Inamdar

Background: Natural polymers are fascinating category of small chain molecules originating for the natural resources, and few examples include Sodium Alginate and Xanthan Gum which are water-soluble in the nature; used for mainly food packaging, biomedical and pharmaceutical applications. In proposed research work, an effort was made to overcome the polymer challenges emerging from the development of polymer blends, as the miscibility between polymers, is a vital aspect. Objective: This work focuses on the miscibility studies of natural origin polymers. In regards to that, Sodium Alginate/ Xanthan Gum blends were prepared in variable concentrations in aqueous medium and it was utilized for viscosity analysis, FTIR, Ultraviolet spectroscopic studies at variable temperatures. Methods: It was observed that the developed, Sodium Alginate / Xanthan Gum blends are miscible with each other at most of the temperatures (at 20°C, 40°C and 60°C) considering their viscosity parameters, FTIR and UV spectral data. Results: Viscosity studies revealed that the miscibility windows of polymeric ratio increases as the temperature increases whereas FTIR spectral patterns exhibited that the composition having 60:40 ratio of polymers exhibits high intensity stretches and represented to be miscible when compared to other combinations. Conclusion: The present study has reported the simple and efficient method in exploration of the miscibility windows of Sodium alginate and Xanthan gum blend.

2013 ◽  
Vol 11 (2) ◽  
pp. 181-189
Author(s):  
Sheikh Tasnim Jahan ◽  
Sams Mohammad Anowar Sadat ◽  
Muhammad Rashedul Islam ◽  
ATM Zafrul Azam ◽  
Jakir Ahmed Chowdhury

The purpose of t h e present research work was to prepare alginate beads containing water soluble drug theophylline using ionic cross linking technique, with electrolyte type and concentration as variables. In this study, the beads were characterized and evaluated in respect of their surface morphology, swelling index and in vitro kinetics. The comparative study among the three polyvalent cationic cross linking agents CaCl2 , BaCl2 and Al2 (SO4)3 were investigated based on their cationic charges. Divalent cation, Ca2+ and Ba2+ containing beads showed simultaneous decrease in drug release with increasing electrolyte amount. In case of Al3+ -alginate beads, the delay in release was due to the ability of Al3+ to form three dimensional bonding structure with the sodium alginate inside the beads. As a result, swelling of beads is delayed leading to slow disintegration. Scanning electron microscope (SEM) photomicrographs revealed that with the increase in the electrolyte concentration the density of the cross link is also increased. When the electrolyte concentration is 5 % then the beads surface is rough and rod shape drug is visible. But when the electrolyte concentration is increased from 10 % to 15 % the surface is comparatively smoother and both the swelling property and in vitro drug release are decreased. Most of the formulations followed Higuchi drug release model. DOI: http://dx.doi.org/10.3329/dujps.v11i2.14578 Dhaka Univ. J. Pharm. Sci. 11(2): 181-189, 2012 (December)


Author(s):  
Karolina Kraśniewska ◽  
Katarzyna Pobiega ◽  
Małgorzata Gniewosz

AbstractThe materials used in food packaging based on non-biodegradable synthetic polymers pose a serious threat of pollution to the environment. Hence, research is now focused on developing eco-friendly and biodegradable packaging obtained from natural polymers. Pullulan is a microbial exopolysaccharide, obtained on a commercial scale by the yeast-like fungus Aureobasidium pullulans. It is a water-soluble, non-toxic and non-mutagenic edible biopolymer with excellent film-forming abilities and adhesive properties. Furthermore, pullulan presents great potential to fabricate thin, transparent, odorless and tasteless edible films and coating used as packaging material. This review article presents an overview on the basic mechanical and barrier properties of a pullulan-based film. It also describes the modification methods applied in order to obtain multifunctional materials in terms of satisfactory physico-mechanical performance and antimicrobial activity for food packaging.


Author(s):  
Mashkura Ashrafi ◽  
Jakir Ahmed Chowdhury ◽  
Md Selim Reza

Capsules of different formulations were prepared by using a hydrophilic polymer, xanthan gum and a filler Ludipress. Metformin hydrochloride, which is an anti-diabetic agent, was used as a model drug here with the aim to formulate sustained release capsules. In the first 6 formulations, metformin hydrochloride and xanthan gum were used in different ratio. Later, Ludipress was added to the formulations in a percentage of 8% to 41%. The total procedure was carried out by physical mixing of the ingredients and filling in capsule shells of size ‘1’. As metformin hydrochloride is a highly water soluble drug, the dissolution test was done in 250 ml distilled water in a thermal shaker (Memmert) with a shaking speed of 50 rpm at 370C &plusmn 0.50C for 6 hours. After the dissolution, the data were treated with different kinetic models. The results found from the graphs and data show that the formulations follow the Higuchian release pattern as they showed correlation coefficients greater than 0.99 and the sustaining effect of the formulations was very high when the xanthan gum was used in a very high ratio with the drug. It was also investigated that the Ludipress extended the sustaining effect of the formulation to some extent. But after a certain period, Ludipress did not show any significant effect as the pores made by the xanthan gum network were already blocked. It is found here that when the metformin hydrochloride and the xanthan gum ratio was 1:1, showed a high percentage of drug release, i.e. 91.80% of drug was released after 6 hours. But With a xanthan gum and metformin hydrochloride ratio of 6:1, a very slow release of the drug was obtained. Only 66.68% of the drug was released after 6 hours. The percent loading in this case was 14%. Again, when Ludipress was used in high ratio, it was found to retard the release rate more prominently. Key words: Metformin Hydrochloride, Xanthan Gum, Controlled release capsule Dhaka Univ. J. Pharm. Sci. Vol.4(1) 2005 The full text is of this article is available at the Dhaka Univ. J. Pharm. Sci. website


2019 ◽  
Vol 9 (01) ◽  
pp. 27-33
Author(s):  
Naveen Kumar ◽  
Sonia Pahuja ◽  
Ranjit Sharma

Humans have taken advantage of the adaptability of polymers for centuries in the form of resins, gums tars, and oils. However, it was not until the industrial revolution that the modern polymer industry began to develop. Polymers represent an important constituent of pharmaceutical dosage forms. Polymers have played vital roles in the formulation of pharmaceutical products. Polymers have been used as a major tool to manage the drug release rate from the formulations. Synthetic and natural-based polymers have found their way into the biomedical and pharmaceutical industries. Synthetic and Natural polymers can be produced with a broad range of strength, heat resistance, density, stiffness and even price. By constant research into the science and applications of polymers, they are playing an ever-increasing role in society. Diverse applications of polymers in the present pharmaceutical field are for controlled drug release. Based on solubility pharmaceutical polymers can be classified as water-soluble and water-insoluble. In general, the desirable polymer properties in pharmaceutical applications are film forming, adhesion, gelling, thickening, pH-dependent solubility and taste masking. General pharmaceutical applications of polymers in various pharmaceutical formulations are also discussed


Author(s):  
Poreddy Srikanth Reddy ◽  
Penjuri Subhash Chandra Bose ◽  
Vuppula Sruthi ◽  
Damineni Saritha

The aim of the present work was to prepare floating tablets of galantamine HBr using sodium alginate and xanthan gum as matrix forming carriers. Galantamine HBr is used for the treatment of mild to moderate Alzheimer's disease and various other memory impairments, in particular those of vascular origin. The matrix tablet formulations were prepared by varying the concentrations of sodium alginate and xanthan gum. The tablets were prepared by direct compression technique using PVP K-30 as a binder and sodium bicarbonate for development of CO2. The prepared matrix tablets were evaluated for properties such as hardness, thickness, friability, weight variation, floating lag time, compatibility using DSC and FTIR. In vitro dissolution was carried out for 12 hrs in 0.1N HCl at 37±0.5 ºC using USP paddle type dissolution apparatus. It was noted that, all the prepared formulations had desired floating lag time and constantly floated on dissolution medium by maintaining the matrix integrity. The drug release from prepared tablets was found to vary with varying concentration of the polymers, sodium alginate and xanthan gum. From the study it was concluded that floating drug delivery system for galantamine HBr can be prepared by using sodium alginate and xanthan gum as a carrier.


Author(s):  
Prakash Goudanavar ◽  
Ankit Acharya ◽  
Vinay C.H

Administration of an antiviral drug, acyclovir via the oral route leads to low and variable bioavailability (15-30%). Therefore, this research work was aimed to enhance bioavailability of acyclovir by nanocrystallization technique. The drug nanocrystals were prepared by anti-solvent precipitation method in which different stabilizers were used. The formed nanocrystals are subjected to biopharmaceutical characterization including solubility, particle size and in-vitro release. SEM studies showed nano-crystals were crystalline nature with sharp peaks. The formulated drug nanocrystals were found to be in the range of 600-900nm and formulations NC7 and NC8 showed marked improvement in dissolution velocity when compared to pure drug, thus providing greater bioavailability. FT-IR and DSC studies revealed the absence of any chemical interaction between drug and polymers used. 


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2381
Author(s):  
Katarzyna Bialik-Wąs ◽  
Ewelina Królicka ◽  
Dagmara Malina

Here, we report on studies on the influence of different crosslinking methods (ionic and chemical) on the physicochemical (swelling ability and degradation in simulated body fluids), structural (FT-IR spectra analysis) and morphological (SEM analysis) properties of SA/PVA hydrogels containing active substances of natural origin. First, an aqueous extract of Echinacea purpurea was prepared using a Soxhlet apparatus. Next, a series of modified SA/PVA-based hydrogels were obtained through the chemical crosslinking method using poly(ethylene glycol) diacrylate (PEGDA, Mn = 700 g/mol) as a crosslinking agent and, additionally, the ionic reaction in the presence of a 5% w/v calcium chloride solution. The compositions of SA/PVA/E. purpurea-based hydrogels contained a polymer of natural origin—sodium alginate (SA, 1.5% solution)—and a synthetic polymer—poly(vinyl alcohol) (PVA, Mn = 72,000 g/mol, 10% solution)—in the ratio 2:1, and different amounts of the aqueous extract of E. purpurea—5, 10, 15 or 20% (v/v). Additionally, the release behavior of echinacoside from the polymeric matrix was evaluated in phosphate-buffered saline (PBS) at 37 °C. The results indicate that the type of the crosslinking method has a direct impact on the release profile. Consequently, it is possible to design a system that delivers an active substance in a way that depends on the application.


Author(s):  
Ratnaparkhi M.P. ◽  
Karnawat G.R. ◽  
Andhale R.S.

Oral route is most preferable route of administration for various drugs, because it is convenient, economical, safest route. Fast dissolving tablets are popular nowadays, as they disintegrated in mouth within a few seconds without using water for swallow. Problems like Dysphagia in pediatric and geriatric patients have been overcome by formulating Fast dissolving tablet. Natural polymers are preferable because they are chemically inert, nontoxic, less expensive, biodegradable, and available easily than synthetic polymers. Natural polymers are obtained from the natural origin so they are devoid of any side effect. It is proved from the previous studies that Natural polymers are more-safe and effective than the synthetic polymers. Natural polymers improve the properties of tablet and they are used as binder, diluent, superdisintegrant, they also enhance the solubility of poorly water-soluble drug, decrease the disintegration time and provide nutritional supplement. The aim of the present article is to study various natural polymers used in fast dissolving tablets.


Sign in / Sign up

Export Citation Format

Share Document