Recent advances in graphene based nano-composites for automotive and off-highway vehicle applications

Author(s):  
Ramkumar Kandasamy

: Nano-composites comprised of a polymer matrix and various types of nanosized fillers have remained as one of the most important engineering materials and continue to draw great interest in the research community and industry. In particular, graphene based nano-composites with high thermal conductivity, excellent mechanical, electrical and optical properties, becomes important and promising filler for making the next generation, high performance composite materials. : Automotive and off-highway machinery industry are extensively viewed as being the industry in which the highest volume of advanced composite materials such as graphene based nano-composites will be used in the future to produce lighter, stronger, more energy-efficient, and safe vehicles. Design, modeling, analyzing and methods for large-scale production of the graphene based nano-composites in automotive and off-highway machinery applications considering it’s mechanical, functional and interface properties between the graphene and polymer matrix under severe loading conditions is challenging, potentially due to nonlinear properties, joining of dissimilar materials and high demand of computations. While graphene based material strategies have been investigated and demonstrated to be effective for structural application in various industries includes electronics, electromechanical and energy systems, currently there is limited research highlighting the specific knowledge available for design engineers and researchers concerned with lightweight and stronger solutions by use of graphene based materials for automotive off-highway vehicle applications. : The present review presents, an overview of the latest studies that utilize graphene-based nanomaterials and their composites in automotive and off-highway machinery applications. First, the paper describes the concept of traditional composites used in present engineering industries considering its advantages and limitations, then highlights the key benefits of using nanostructured carbon material, such as graphene through some recent studies available in the literature. Then depicts the various mechanisms of integrating graphene as polymer reinforcements within composite materials, which have been found based on the survey, and their related modeling, designing, and manufacturing capabilities suitable for automotive and off-highway machinery industry. Finally outlines the available experimental evidence for graphene based composites. In order to lay the groundwork for future work in this exciting area, the paper discusses close by several future prospects as well as the current challenges in this field.

Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1475 ◽  
Author(s):  
Kristian Birk Buhl ◽  
Asger Holm Agergaard ◽  
Mie Lillethorup ◽  
Jakob Pagh Nikolajsen ◽  
Steen Uttrup Pedersen ◽  
...  

Creating strong joints between dissimilar materials for high-performance hybrid products places high demands on modern adhesives. Traditionally, adhesion relies on the compatibility between surfaces, often requiring the use of primers and thick bonding layers to achieve stable joints. The coatings of polymer brushes enable the compatibilization of material surfaces through precise control over surface chemistry, facilitating strong adhesion through a nanometer-thin layer. Here, we give a detailed account of our research on adhesion promoted by polymer brushes along with examples from industrial applications. We discuss two fundamentally different adhesive mechanisms of polymer brushes, namely (1) physical bonding via entanglement and (2) chemical bonding. The former mechanism is demonstrated by e.g., the strong bonding between poly(methyl methacrylate) (PMMA) brush coated stainless steel and bulk PMMA, while the latter is shown by e.g., the improved adhesion between silicone and titanium substrates, functionalized by a hydrosilane-modified poly(hydroxyethyl methacrylate) (PHEMA) brush. This review establishes that the clever design of polymer brushes can facilitate strong bonding between metals and various polymer materials or compatibilize fillers or nanoparticles with otherwise incompatible polymeric matrices. To realize the full potential of polymer brush functionalized materials, we discuss the progress in the synthesis of polymer brushes under ambient and scalable industrial conditions, and present recent developments in atom transfer radical polymerization for the large-scale production of brush-modified materials.


Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1899 ◽  
Author(s):  
Haiwei Yang ◽  
Zongqian Wang ◽  
Zhi Liu ◽  
Huan Cheng ◽  
Changlong Li

Aerogel fiber, with the characteristics of ultra-low density, ultra-high porosity, and high specific surface area, is the most potential candidate for manufacturing wearable thermal insulation material. However, aerogel fibers generally show weak mechanical properties and complex preparation processes. Herein, through firstly preparing a cellulose acetate/polyacrylic acid (CA/PAA) hollow fiber using coaxial wet-spinning followed by injecting the silk fibroin (SF) solution into the hollow fiber, the CA/PAA-wrapped SF aerogel fibers toward textile thermal insulation were successfully constructed after freeze-drying. The sheath (CA/PAA hollow fiber) possesses a multiscale porous structure, including micropores (11.37 ± 4.01 μm), sub-micron pores (217.47 ± 46.16 nm), as well as nanopores on the inner (44.00 ± 21.65 nm) and outer (36.43 ± 17.55 nm) surfaces, which is crucial to the formation of a SF aerogel core. Furthermore, the porous CA/PAA-wrapped SF aerogel fibers have many advantages, such as low density (0.21 g/cm3), high porosity (86%), high strength at break (2.6 ± 0.4 MPa), as well as potential continuous and large-scale production. The delicate structure of multiscale porous sheath and ultra-low-density SF aerogel core synergistically inhibit air circulation and limit convective heat transfer. Meanwhile, the high porosity of aerogel fibers weakens heat transfer and the SF aerogel cellular walls prevent infrared radiation. The results show that the mat composed of these aerogel fibers exhibits excellent thermal insulating properties with a wide working temperature from −20 to 100 °C. Therefore, this SF-based aerogel fiber can be considered as a practical option for high performance thermal insulation.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Jing Ning ◽  
Maoyang Xia ◽  
Dong Wang ◽  
Xin Feng ◽  
Hong Zhou ◽  
...  

Abstract Recent developments in the synthesis of graphene-based structures focus on continuous improvement of porous nanostructures, doping of thin films, and mechanisms for the construction of three-dimensional architectures. Herein, we synthesize creeper-like Ni3Si2/NiOOH/graphene nanostructures via low-pressure all-solid melting-reconstruction chemical vapor deposition. In a carbon-rich atmosphere, high-energy atoms bombard the Ni and Si surface, and reduce the free energy in the thermodynamic equilibrium of solid Ni–Si particles, considerably catalyzing the growth of Ni–Si nanocrystals. By controlling the carbon source content, a Ni3Si2 single crystal with high crystallinity and good homogeneity is stably synthesized. Electrochemical measurements indicate that the nanostructures exhibit an ultrahigh specific capacity of 835.3 C g−1 (1193.28 F g−1) at 1 A g−1; when integrated as an all-solid-state supercapacitor, it provides a remarkable energy density as high as 25.9 Wh kg−1 at 750 W kg−1, which can be attributed to the free-standing Ni3Si2/graphene skeleton providing a large specific area and NiOOH inhibits insulation on the electrode surface in an alkaline solution, thereby accelerating the electron exchange rate. The growth of the high-performance composite nanostructure is simple and controllable, enabling the large-scale production and application of microenergy storage devices.


Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5558
Author(s):  
Dimitra Vernardou ◽  
Charalampos Drosos ◽  
Andreas Kafizas ◽  
Martyn E. Pemble ◽  
Emmanouel Koudoumas

The need for clean and efficient energy storage has become the center of attention due to the eminent global energy crisis and growing ecological concerns. A key component in this effort is the ultra-high performance battery, which will play a major role in the energy industry. To meet the demands in portable electronic devices, electric vehicles, and large-scale energy storage systems, it is necessary to prepare advanced batteries with high safety, fast charge ratios, and discharge capabilities at a low cost. Cathode materials play a significant role in determining the performance of batteries. Among the possible electrode materials is vanadium pentoxide, which will be discussed in this review, due to its low cost and high theoretical capacity. Additionally, aqueous electrolytes, which are environmentally safe, provide an alternative approach compared to organic media for safe, cost-effective, and scalable energy storage. In this review, we will reveal the industrial potential of competitive methods to grow cathodes with excellent stability and enhanced electrochemical performance in aqueous media and lay the foundation for the large-scale production of electrode materials.


RSC Advances ◽  
2015 ◽  
Vol 5 (47) ◽  
pp. 37830-37836 ◽  
Author(s):  
Wei Wei ◽  
Linlin Guo ◽  
Xiaoyang Qiu ◽  
Peng Qu ◽  
Maotian Xu ◽  
...  

Although many routes have been developed that can efficiently improve the electrochemical performance of LiFePO4 cathodes, few of them meet the urgent industrial requirements of large-scale production, low cost and excellent performance.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2414
Author(s):  
Md Abdullah Al Faruque ◽  
Md Syduzzaman ◽  
Joy Sarkar ◽  
Kadir Bilisik ◽  
Maryam Naebe

Graphene-based materials in the form of fibres, fabrics, films, and composite materials are the most widely investigated research domains because of their remarkable physicochemical and thermomechanical properties. In this era of scientific advancement, graphene has built the foundation of a new horizon of possibilities and received tremendous research focus in several application areas such as aerospace, energy, transportation, healthcare, agriculture, wastewater management, and wearable technology. Although graphene has been found to provide exceptional results in every application field, a massive proportion of research is still underway to configure required parameters to ensure the best possible outcomes from graphene-based materials. Until now, several review articles have been published to summarise the excellence of graphene and its derivatives, which focused mainly on a single application area of graphene. However, no single review is found to comprehensively study most used fabrication processes of graphene-based materials including their diversified and potential application areas. To address this genuine gap and ensure wider support for the upcoming research and investigations of this excellent material, this review aims to provide a snapshot of most used fabrication methods of graphene-based materials in the form of pure and composite fibres, graphene-based composite materials conjugated with polymers, and fibres. This study also provides a clear perspective of large-scale production feasibility and application areas of graphene-based materials in all forms.


Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4161 ◽  
Author(s):  
Vincenzo Tagliaferri ◽  
Federica Trovalusci ◽  
Stefano Guarino ◽  
Simone Venettacci

In this study, the authors present a comparative analysis of different additive manufacturing (AM) technologies for high-performance components. Four 3D printers, currently available on the Italian national manufacturing market and belonging to three different AM technologies, were considered. The analysis focused on technical aspects to highlight the characteristics and performance limits of each technology, economic aspects to allow for an assessment of the costs associated with the different processes, and environmental aspects to focus on the impact of the production cycles associated with these technologies on the ecosystem, resources and human health. This study highlighted the current limits of additive manufacturing technologies in terms of production capacity in the case of large-scale production of plastic components, especially large ones. At the same time, this study highlights how the geometry of the object to be developed greatly influences the optimal choice between the various AM technologies, in both technological and economic terms. Fused deposition modeling (FDM) is the technology that exhibits the greatest limitations hindering mass production due to production times and costs, but also due to the associated environmental impact.


2019 ◽  
Vol 135 ◽  
pp. 03017
Author(s):  
Khungianos Yavruyan ◽  
Vladimir Kotlyar ◽  
Evgeniy Gaishun ◽  
Anastasia Okhotnaya ◽  
Elizaveta Lotoshnikova ◽  
...  

General description of coal dumps products processing is described: medium factional materials - screenings that do not contain carbon; kiln fractional - coal sand, coal containing up to 30%; petty factional - coal slurries, coal containing up to 50% are given. Ceramic kilns and technological properties of processing coal dumps products are given. Compositions of raw mixtures for obtaining products with a compressive strength of 10-15 MPa and density less than 800 kg / m3, and considering the fact that the molding process is carried out semi-rigid extrusion and the necessity of minimum costs for firing is defined. Depending on the technological properties of screenings, depending on the degree of grinding and firing temperature is taken into account. Flow production of modern equipment is pointed out. Technical and economic indicators showing high profitability and the prospect of large-scale production of clay tiles on the basis of coal dumps processing products due to minimal manufacturing cost are mentioned. The carried out results of the work allowed to choose the raw materials and to develop the technological scheme of production of high-performance ceramic stones with a minimum cost. Implementation of the results in practice will create a highly profitable production and make the Rostov region a major manufacturer of ceramic wall.


Nanoscale ◽  
2021 ◽  
Author(s):  
Adrián Romaní Vázquez ◽  
Christof Neumann ◽  
Mino Borrelli ◽  
Huanhuan Shi ◽  
Matthias Kluge ◽  
...  

Graphene and related materials have been widely studied for their superior properties in a wide field of applications. However, large-scale production remains a critical challenge to enable commercial acceptance. Here,...


Sign in / Sign up

Export Citation Format

Share Document