Antioxidant Profile of Home Prepared Taraxacum Officinale Weber Ex Wigg Beverage

2020 ◽  
Vol 1 (1) ◽  
pp. 64-72
Author(s):  
Christos Kontogiorgis ◽  
Georgia Eirini Deligiannidou ◽  
Vasiliki Karamani ◽  
Dimitra Hadjipavlou-Litina ◽  
Diamanto Lazari ◽  
...  

Background: Aromatic plants are quite popular for daily use worldwide. However, little is known about the appropriate preparation of beverages in “house conditions” in order to preserve their beneficial characteristics after processing. Taraxacum officinale Weber ex Wigg contains a variety of compounds, with well-documented effects against oxidative stress. This study aims to investigate the optimum preparation conditions of a Taraxacum beverage in the household setting, with respect to its antioxidant characteristics. Methods: Dried, commercial T. officinale was used to prepare beverages boiling for 1, 3 or 5 min. The beverages were extracted using organic solvents of increasing polarity, and the solid residues of each extraction were examined by in vitro analysis on: the evaluation of total phenolic content (Folin Ciocalteau), the evaluation of antioxidant activity (DPPH and ABTS radicals scavenging), the evaluation of the ability of the tested extracts to compete with DMSO for OH radicals, the ability to inhibit lipid peroxidation of linoleic acid and soybean lipoxygenase inhibition assay. Results: All preparations had an overall good antioxidant profile. Regarding the chosen solvents, mid polarity solvents were more likely to give better results in all tests conducted, which can be indicative of the compounds extracted in each fraction. Samples prepared under 3 min boiling presented significant interaction with DPPH and strong lipoxygenase and lipid peroxidation inhibition. Conclusion: As previously observed in the literature, food processing can greatly affect its biochemical characteristics. In the case of Taraxacum, boiling for 3 min resulted in the best overall profile of the beverage with respect to its antioxidant properties. However, due to a variety of components present in each plant, further investigation and stratification, along with in vivo experiments are needed.

2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Praneetha Pallerla ◽  
Narsimha Reddy Yellu ◽  
Ravi Kumar Bobbala

Abstract Background The objective of the study is to evaluate the hepatoprotective activity of methanolic extract fractions of Lindernia ciliata (LC) and development of qualitative analytical profile of the bioactive fraction using HPLC fingerprinting analysis. All the fractions of methanolic extract of Lindernia ciliata (LCME) are assessed for their total phenolic, flavonoid contents and in vitro antioxidant properties by using DPPH, superoxide, nitric oxide, hydroxyl radical scavenging activities and reducing power assay. Acute toxicity study was conducted for all the fractions and the two test doses 50 and 100 mg/kg were selected for the hepatoprotective study. Liver damage was induced in different groups of rats by administering 3 g/kg.b.w.p.o. paracetamol and the effect of fractions were tested for hepatoprotective potential by evaluating serum biochemical parameters and histology of liver of rats. The effective fraction was evaluated for its antihepatotoxic activity against D-Galactosamine (400 mg/kg b.w. i.p.) and in vivo antioxidant parameters viz., Glutathione (GSH), Melondialdehyde (MDA) and Catalase (CAT) levels are estimated using liver homogenate. Results Among all the fractions, butanone fraction of LCME, (BNF-LCME) has shown better hepatoprotective activity and hence it is selected to evaluate the antihepatotoxicity against D-GaIN. The activity of BNF-LCME is well supported in in vitro and in vivo antioxidant studies and may be attributed to flavonoidal, phenolic compounds present in the fraction. Hence, BNF-LCME was subjected to the development of qualitative analytical profile using HPLC finger printing analysis. Conclusions All the fractions of LCME exhibited significant hepatoprotective activity and BNF-LCME (50 mg/kg) was identified as the most effective fraction.


2009 ◽  
Vol 6 (2) ◽  
pp. 227-231 ◽  
Author(s):  
S. A. Adesegun ◽  
A. Fajana ◽  
C. I. Orabueze ◽  
H. A. B. Coker

The antioxidant activities of crude extract ofPhaulopsis fascisepalaleaf were evaluated and compared with α-tocopherol and BHT as synthetic antioxidants and ascorbic acid as natural-based antioxidant.In vitro, we studied its antioxidative activities, radical-scavenging effects, Fe2+-chelating ability and reducing power. The total phenolic content was determined and expressed in gallic acid equivalent. The extract showed variable activities in all of thesein vitrotests. The antioxidant effect ofP. fascisepalawas strongly dose dependent, increased with increasing leaf extract dose and then leveled off with further increase in extract dose. Compared to other antioxidants used in the study, α-Tocopherol, ascorbic acid and BHT,P. fascisepalaleaf extract showed less scavenging effect on α,α,-diphenyl-β-picrylhydrazyl (DPPH) radical and less reducing power on Fe3+/ferricyanide complex but better Fe2+-chelating ability. These results revealed thein vitroantioxidant activity ofP.fascisepala.Further investigations are necessary to verify these activitiesin vivo.


2019 ◽  
Vol 44 (3) ◽  
pp. 239-247
Author(s):  
Mbarka Hfaiedh ◽  
Dalel Brahmi ◽  
Mohamed Nizar Zourgui ◽  
Lazhar Zourgui

Environmental and occupational exposure to chromium compounds, especially hexavalent chromium, is widely recognized as potentially nephrotoxic in humans and animals. The present study aimed to assess the efficacy of cactus (Opuntia ficus-indica) against sodium dichromate-induced nephrotoxicity, oxidative stress, and genotoxicity. Cactus cladodes extract (CCE) was phytochemically studied and tested in vitro for its potential antioxidant activities. Additionally, the preventive effect of CCE against sodium dichromate-induced renal dysfunction in a Wistar rat model (24 rats) was evaluated. For this purpose, CCE at a dose of 100 mg/kg was orally administered, followed by 10 mg/kg sodium dichromate (intraperitoneal injection). After 40 days of treatment, the rats were sacrificed, and the kidneys were excised for histological, lipid peroxidation, and antioxidant enzyme analyses. The phenol, flavonoid, tannin, ascorbic acid, and carotenoid contents of CCE were considered to be important. Our analyses showed that 1 mL of CCE was equivalent to 982.5 ± 1.79 μg of gallic acid, 294.37 ± 0.84 μg of rutin, 234.78 ± 0.24 μg of catechin, 204.34 ± 1.53 μg of ascorbic acid, and 3.14 ± 0.51 μg of β-carotene. In vivo, pretreatment with CCE was found to provide significant protection against sodium dichromate-induced nephrotoxicity by inhibiting lipid peroxidation, preserving normal antioxidant activities, and protecting renal tissues from lesions and DNA damage. The nephroprotective potential of CCE against sodium dichromate toxicity might be due to its antioxidant properties.


2007 ◽  
Vol 19 (1) ◽  
pp. 262 ◽  
Author(s):  
I. Dimitriadis ◽  
E. A. Rekka ◽  
E. Vainas ◽  
G. S. Amiridis ◽  
C. A. Rekkas

The substrates used in in vitro embryo production (IVP) mimic the in vivo fluids in which oocytes mature, oocytes are fertilized, and the early embryos develop (follicular and oviductal fluid). It is well established that oxidative stress negatively affects in vitro culture (IVC) outcomes. Guaiazulene (G) is a component of chamomile species oil with known antioxidant properties. In the present study, all IVP media were modified by the addition of G solutions so that the former exhibited a total protection against induced lipid peroxidation (TPaLP) similar to that of the respective in vivo environment. The IVP outcomes were then compared between G-processed and control oocytes. Bovine preovulatory follicular (BF) and oviductal (BO) fluid samples were collected from 10 Holstein 4- to 5-year-old cows in estrus. TPaLP was assessed according to the samples' ability to inhibit rat hepatic microsomal lipid peroxidation, by determination of the 2-thiobarbituric acid reactive material. TPaLP (mean % � SEM) of the BF and BO were 70.63 � 10.03 and 16.33 � 4.33, respectively, whereas those of the IVP [in vitro-matured (IVM), in vitro-fertilized (IVF), and IVC] media were lower (17.94 � 1.66, -1.82 � 0.78, and 14.57 � 1.26, respectively). TPaLP of the 0.1 mM G-modified IVP medium increased to 67.2 � 5.85, 19.98 � 2.49, and 69.19 � 6.22, respectively. A total of 2041 class A oocytes were used. The proportion of cleavage, early embryo development (embryos with more than 4 cells), or both after IVP (18 h IVM–5% CO2 in air, and 18 h IVF, 48 h IVC–5% CO2, 10% O2, 85% N) in the presence of G (n = 1237) during each of the IVP phases or any possible combination of IVP phases was compared with the respective control (C, n = 804). Statistical analysis was performed by a chi-squared test; P < 0.05 was considered significant. G improved cleavage and embryo development rates when present during IVM (79.4 and 57.8% vs. 64.5 and 38.2% for C) or both IVM and IVC (78.0 and 60.7% vs. 57.8 and 36.5%, respectively). When present only during 18 h of IVF, G had no effect on embryo production. However, an increased embryo development rate resulted from the combined exposure to G during IVF and IVM (56.4 vs. 29.6%), during IVF and IVC (55.3 vs. 35.5%), or at all IVP phases (56.6 vs. 34.9%). The latter effect resembled the one obtained after G addition only to the IVC medium (62.5 vs. 39.7%, respectively). We concluded that the addition of G to IVP substrates, at concentrations that mimic the in vivo TPaLP conditions, could promote bovine IVP efficiency.


Scientifica ◽  
2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Tekeshwar Kumar ◽  
Vishal Jain

The aim of this study was to determine the impending antioxidant properties of different extracts of crude methanolic extract (CME) of leaves ofLannea coromandelica(L. coromandelica) and its two ethyl acetate (EAF) and aqueous (AqF) subfractions by employing various establishedin vitrosystems and estimation of total phenolic and flavonoid content. The results showed that extract and fractions possessed strong antioxidant activityin vitroand among them, EAF had the strongest antioxidant activity. EAF was confirmed for its highest phenolic content, total flavonoid contents, and total antioxidant capacity. The EAF was found to show remarkable scavenging activity on 2,2-diphenylpicrylhydrazyl (DPPH) (EC5063.9 ± 0.64 µg/mL), superoxide radical (EC508.2 ± 0.12 mg/mL), and Fe2+chelating activity (EC506.2 ± 0.09 mg/mL). Based on ourin vitroresults, EAF was investigated forin vivoantioxidant assay. Intragastric administration of the EAF can significantly increase levels of superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and glutathione peroxidase (GSH-Px) levels, and decrease malondialdehyde (MDA) content in the liver and kidney of CCl4-intoxicated rats. These new evidences show thatL. coromandelicabared antioxidant activity.


1988 ◽  
Vol 64 (5) ◽  
pp. 2092-2099 ◽  
Author(s):  
E. R. Pacht ◽  
W. B. Davis

Lung epithelial lining fluid (ELF) is a thin layer of plasma ultrafiltrate and locally secreted substances that may provide antioxidant protection and serve as a "front-line" defense for the lower respiratory tract epithelium. To characterize the antioxidant properties of ELF, young, healthy, nonsmoking volunteers underwent bronchoalveolar lavage with determination of ELF volumes and ELF proteins. ELF (greater than 0.4 ml) is a potent inhibitor of lipid peroxidation as measured by malondialdehyde (MDA) production in an in vitro iron-dependent assay system. Two serum proteins, transferrin and ceruloplasmin, were quantitated in ELF and found to be potent inhibitors of lipid peroxidation. Other ELF components, including vitamin E, vitamin C, and albumin, did not function as antioxidants in this system. Several experimental observations suggest that ELF transferrin was more important than ceruloplasmin in inhibiting lipid peroxidation: 1) ELF concentrations of transferrin were 20-fold higher than those for ceruloplasmin; 2) ELF antioxidant activity was abolished by preincubation with Fe3+; 3) ELF antioxidant activity was minimally affected by sodium azide, which is known to inhibit ceruloplasmin ferroxidase activity; and 4) ELF ceruloplasmin ferroxidase activity was virtually nondetectable. ELF possesses a significant antioxidant activity that may be important in vivo in protecting the lung from oxidant injury.


Author(s):  
Songul Cetik Yildiz ◽  
Cumali Keskin ◽  
Adnan Ayhanci

The aim of this study was to investigate in-vitro antioxidant properties and in-vivo protective effects of different concentrations of Hypericum triquetrifolium Turra. (HT) seed methanol extracts against acute hepatotoxicity, myelotoxicity and hematotoxicity in rats exposed to overdose of cyclophosphamide (CP). HT seed methanol extracts were tested in view of its in-vitro antioxidant activities as total phenolic contents and DPPH free radical-scavenging activity. To investigate in-vivo protective effects of HT seed methanol extracts on rat tissues; tested animals were divided into nine groups. Three groups only were treated with HT extracts (25, 50 and 100 mg/kg HT) for 6 days. Three groups were pre-treated with the extract of HT (25, 50 and 100 mg/kg HT) for 6 days and on the last day they were injected with single dose of CP (150-mg/kg body weight). Two groups were used as control groups and one group was only treated with CP (150 mg/kg) on the 6th day. The toxic effects of CP and protective effects of HT extracts on the nucleated cells which were produced by bone marrow and serum alanine transaminase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), oxidative stress index (OSI) levels were investigated biochemically. Additionally, liver tissue samples were examined histopathologically. Our results show that HT seed methanol extract has high total phenolic content and antioxidant activity. Over dose CP administration caused hepatotoxicity, myelotoxicity and hematotoxicity on rat. Whereas, 25, 50 and 100 mg/kg HT plus CP administered groups showed significant protective effects on nucleated cells. And 25, 50, 100 mg/kg HT plus CP treated groups showed an important decrease on serum ALT, ALP, LDH and OSI levels when compared with CP treated group. Our results showed that the administration of different HT doses with high doses of CP significantly reduced hepatotoxicity, myelotoxicity and hematoxicity on rats.


Author(s):  
Michael C Ojo ◽  
◽  
Foluso O Osunsanmi ◽  
Nkosinathi D Cele ◽  
Godfrey E Zharare ◽  
...  

Reactive oxygen species are implicated in multiple pathological conditions including erectile dysfunction. This study evaluated the in vitro and in vivo antioxidant potential of the methanolic extracts of Inula glomerata and Salacia kraussii. The plant materials were pulverized and extracted with methanol. The phytochemical analysis, ability of the crude extracts to scavenge free radicals (ABTS, DPPH, NO.) in vitro as well as the total phenolic and flavonoid contents was investigated. In vivo, antioxidant potentials of the crude extracts (50/250 mg/kg body weight) were determined in an erectile dysfunction rat model. The phytochemical analysis revealed that both plants contain flavonoids, tannins, terpenoids, and alkaloids. The crude extracts at varying degree of efficiency, scavenged ABTS and DPPH radicals. The crude extracts at low concentrations (50 mg/kg b.w) significantly (p<0.05) diminished the level of malondialdehyde, augmented catalase activities and elevated glutathione levels. However, SOD activities were significantly boosted in a dose-dependent manner by the crude extracts. Therefore, I. glomerata and S. kraussii possess antioxidant properties, hence, can serve as a therapeutic modality in the treatment of oxidative stress-induced erectile dysfunction.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Adel S. Al-Zubairi ◽  
Ahmad Bustamam Abdul ◽  
Siddig Ibrahim Abdelwahab ◽  
Chew Yuan Peng ◽  
Syam Mohan ◽  
...  

The use of evidence-based complementary and alternative medicine is increasing rapidly.Eleucine indica(EI) is traditionally used in ailments associated with liver and kidneys. The therapeutic benefit of the medicinal plants is often attributed to their antioxidant properties. Therefore, the aim of this study was to screen the hexane, dicholoromethane, ethyl acetate (EA) and methanol extracts (MeTH) of EI for their antioxidant, antibacterial and anti-cancer effects using total phenolic contents (TPCs) and DPPH, disc diffusion method and MTT cytotoxicity assays, respectively. The MeTH was showed to have the highest TPC and scavenging activity (77.7%) on DPPH assay, followed by EA (64.5%), hexane (47.19%) and DCM (40.83%) extracts, whereas the MeTH showed no inhibitory effect on all tested bacteria strains. However, the EA extract exhibited a broad spectrum antibacterial activity against all tested bacteria exceptBacillus subtilis, in which this bacterium was found to be resistant to all EI extracts. Meanwhile, hexane extract was demonstrated to have a remarkable antibacterial activity against methicillin resistantStaphylococcus aureus(MRSA) andPseudomonas aeruginosa, while the dicholoromethane extract did not exhibit significant activity againstP. aeruginosa. None of the extracts showed significant cytotoxic activity towards MCF-7, HT-29 and CEM-SS human cancer cell lines after 72 h incubation time (IC50> 30 μg/ml). These results demonstrate that the extract prepared from the EI possesses antioxidant activityin vitroin addition to antibacterial properties. Further investigations are needed to verify the antioxidant effectsin vitroandin vivo.


2020 ◽  
Vol 33 (3) ◽  
pp. 168-175
Author(s):  
Lana YM. Juee ◽  
Alaadin M. Naqishbandi

AbstractTaraxacum officinale F.H. Wigg (Asteraceae) root is traditionally used to treat diabetes, dyspepsia, heartburn, anorexia and hepatitis. In this work, petroleum ether, chloroform, methanol and aqueous extracts of T. officinale root were evaluated for their antidiabetic activity in normoglycemic and alloxan-induced diabetic mice at two concentrations (200 and 400 mg/kg) using antidiabetic and subcutaneous glucose tolerance tests. Herein, in vitro glucose uptake assay was performed using HepG2 and 2-NDBG, while LC-MS/MS was employed for the phytochemical study of the main active constituents in the active extract. In the experiments, T. officinale root aqueous extract (400 mg/kg) showed a significant decrement in blood glucose level (62.33%, p ≤0.05), while other extracts (p >0.05) showed insignificant activity – in alloxan-induced diabetic mice with no apparent effect on the normoglycemic model. The extracts also showed an insignificant reduction in glucose levels (p >0.05) in the subcutaneous glucose tolerance test. However, a significant glucose uptake enhancement (149.6724%, p ≤0.05) was exhibited by the aqueous extract. Phytochemical study of the aqueous extract showed higher total phenolic than total flavonoid content, in which chlorogenic acid, protocatechuic acid, and luteolin-7-glucoside were identified.


Sign in / Sign up

Export Citation Format

Share Document