The Momentum Equation and Its Application

Author(s):  
Jafar Mehdi Hassan ◽  
Salman Hussien Omran ◽  
Laith Jaafer Habeeb ◽  
Alamaslamani Ammar Fadhil Shnawa ◽  
Adrian Ciocănea
Keyword(s):  
Author(s):  
Xiao-Hua Zhu ◽  
Xiao-Hua Zhu ◽  
Ze-Nan Zhu ◽  
Ze-Nan Zhu ◽  
Xinyu Guo ◽  
...  

A coastal acoustic tomography (CAT) experiment for mapping the tidal currents in the Zhitouyang Bay was successfully carried out with seven acoustic stations during July 12 to 13, 2009. The horizontal distributions of tidal current in the tomography domain are calculated by the inverse analysis in which the travel time differences for sound traveling reciprocally are used as data. Spatial mean amplitude ratios M2 : M4 : M6 are 1.00 : 0.15 : 0.11. The shallow-water equations are used to analyze the generation mechanisms of M4 and M6. In the deep area, velocity amplitudes of M4 measured by CAT agree well with those of M4 predicted by the advection terms in the shallow water equations, indicating that M4 in the deep area where water depths are larger than 60 m is predominantly generated by the advection terms. M6 measured by CAT and M6 predicted by the nonlinear quadratic bottom friction terms agree well in the area where water depths are less than 20 m, indicating that friction mechanisms are predominant for generating M6 in the shallow area. Dynamic analysis of the residual currents using the tidally averaged momentum equation shows that spatial mean values of the horizontal pressure gradient due to residual sea level and of the advection of residual currents together contribute about 75% of the spatial mean values of the advection by the tidal currents, indicating that residual currents in this bay are induced mainly by the nonlinear effects of tidal currents.


2017 ◽  
Vol 65 (2) ◽  
pp. 155-162 ◽  
Author(s):  
A. Rauf ◽  
S. A. Shehzad ◽  
T. Hayat ◽  
M. A. Meraj ◽  
A. Alsaedi

AbstractIn this article the stagnation point flow of electrically conducting micro nanofluid towards a shrinking sheet, considering a chemical reaction of first order is investigated. Involvement of magnetic field occurs in the momentum equation, whereas the energy and concentrations equations incorporated the influence of thermophoresis and Brownian motion. Convective boundary condition on temperature and zero mass flux condition on concentration are implemented. Partial differential equations are converted into the ordinary ones using suitable variables. The numerical technique is utilized to discuss the results for velocity, microrotation, temperature, and concentration fields.


2013 ◽  
Vol 729 ◽  
pp. 702-731 ◽  
Author(s):  
A. I. Ruban ◽  
M. A. Kravtsova

AbstractIn this paper we study the three-dimensional perturbations produced in a hypersonic boundary layer by a small wall roughness. The flow analysis is performed under the assumption that the Reynolds number, $R{e}_{0} = {\rho }_{\infty } {V}_{\infty } L/ {\mu }_{0} $, and Mach number, ${M}_{\infty } = {V}_{\infty } / {a}_{\infty } $, are large, but the hypersonic interaction parameter, $\chi = { M}_{\infty }^{2} R{ e}_{0}^{- 1/ 2} $, is small. Here ${V}_{\infty } $, ${\rho }_{\infty } $ and ${a}_{\infty } $ are the flow velocity, gas density and speed of sound in the free stream, ${\mu }_{0} $ is the dynamic viscosity coefficient at the ‘stagnation temperature’, and $L$ is the characteristic distance the boundary layer develops along the body surface before encountering a roughness. We choose the longitudinal and spanwise dimensions of the roughness to be $O({\chi }^{3/ 4} )$ quantities. In this case the flow field around the roughness may be described in the framework of the hypersonic viscous–inviscid interaction theory, also known as the triple-deck model. Our main interest in this paper is the nonlinear behaviour of the perturbations. We study these by means of numerical solution of the triple-deck equations, for which purpose a modification of the ‘skewed shear’ technique suggested by Smith (United Technologies Research Center Tech. Rep. 83-46, 1983) has been used. The technique requires global iterations to adjust the viscous and inviscid parts of the flow. Convergence of such iterations is known to be a major problem in viscous–inviscid calculations. In order to achieve improved stability of the method, both the momentum equation for the viscous part of the flow, and the equations describing the interaction with the flow outside the boundary layer, are treated implicitly in this study. The calculations confirm the fact that in this sort of flow the perturbations are capable of propagating upstream in the boundary layer, resulting in a perturbation field which surrounds the roughness on all sides. We found that the perturbations decay rather fast with the distance from the roughness everywhere except in the wake behind the roughness. We found that if the height of the roughness is small, then the perturbations also decay in the wake, though much more slowly than outside the wake. However, if the roughness height exceeds some critical value, then two symmetric counter-rotating vortices form in the wake. They appear to support themselves and grow as the distance from the roughness increases.


2017 ◽  
Vol 9 (2) ◽  
pp. 168781401668726 ◽  
Author(s):  
Fan Yang ◽  
Gangyan Li ◽  
Dawei Hu ◽  
Toshiharu Kagawa

In this study, we proposed a method for calculating the sonic conductance of a short-tube orifice. First, we derived a formula for calculating the sonic conductance based on a continuity equation, a momentum equation and the definition of flow-rate characteristics. The flow-rate characteristics of different orifices were then measured using the upstream constant-pressure test method in ISO 6358. Based on these test data, the theoretical formula was simplified using the least squares fitting method, the accuracy of which was verified experimentally. Finally, the effects of the diameter ratio, the length-to-diameter ratio and the critical pressure ratio were analysed with reference to engineering applications, and a simplified formula was derived. We conclude that the influence of the diameter ratio is greater than that of the length-to-diameter ratio. When the length-to-diameter ratio is <5, its effect can be neglected. The critical pressure ratio has little effect on the sonic conductance of a short-tube orifice, and it can be set to 0.5 when calculating the sonic conductance in engineering applications. The formula proposed in this study is highly accurate with a mean error of <3%.


2010 ◽  
Vol 40 (11) ◽  
pp. 2418-2434 ◽  
Author(s):  
Mark T. Stacey ◽  
Matthew L. Brennan ◽  
Jon R. Burau ◽  
Stephen G. Monismith

Abstract Observations of turbulent stresses and mean velocities over an entire spring–neap cycle are used to evaluate the dynamics of tidally averaged flows in a partially stratified estuarine channel. In a depth-averaged sense, the net flow in this channel is up estuary due to interaction of tidal forcing with the geometry of the larger basin. The depth-variable tidally averaged flow has the form of an estuarine exchange flow (downstream at the surface, upstream at depth) and varies in response to the neap–spring transition. The weakening of the tidally averaged exchange during the spring tides appears to be a result of decreased stratification on the tidal time scale rather than changes in bed stress. The dynamics of the estuarine exchange flow are defined by a balance between the vertical divergence of the tidally averaged turbulent stress and the tidally averaged pressure gradient in the lower water column. In the upper water column, tidal stresses are important contributors, particularly during the neap tides. The usefulness of an effective eddy viscosity in the tidally averaged momentum equation is explored, and it is seen that the effective eddy viscosity on the subtidal time scale would need to be negative to close the momentum balance. This is due to the dominant contribution of tidally varying turbulent momentum fluxes, which have no specific relation to the subtidal circulation. Using a water column model, the validity of an effective eddy viscosity is explored; for periodically stratified water columns, a negative effective viscosity is required.


2011 ◽  
Vol 328-330 ◽  
pp. 1755-1758
Author(s):  
Han Xiao Liu ◽  
Zhong Liu ◽  
Huai Liang Li ◽  
Xin Xin Feng ◽  
Zhen Zhong Xing

In this paper, the continuity equation, momentum equation and the k-ε turbulence equation were introduced to simulate the flow field of the multiple vortex bodies in different spacing cases. Found that each vortex body had good effect in producing vortex, and the greater flow field spacing, the smaller the highest velocity; the turbulence intensity is increasing gradually from the former vortex body to the next one, and there may be a best spacing between the vortex bodies which makes the best turbulent intensity. All of these theories provide a train of thought for the turbulent coalescence mechanism.


Author(s):  
Theodosios Korakianitis ◽  
Dequan Zou

This paper presents a new method to design (or analyze) subsonic or supersonic axial compressor and turbine stages and their three-dimensional velocity diagrams from hub to tip by solving the three-dimensional radial-momentum equation. Some previous methods (matrix through-flow based on the streamfunction approach) can not handle locally supersonic flows, and they are computationally intensive when they require the inversion of large matrices. Other previous methods (streamline curvature) require two nested iteration loops to provide a converged solution: an outside iteration loop for the mass-flow balance; and an inside iteration loop to solve the radial momentum equation at each flow station. The present method is of the streamline-curvature category. It still requires the iteration loop for the mass-flow balance, but the radial momentum equation at each flow station is solved using a one-pass numerical predictor-corrector technique, thus reducing the computational effort substantially. The method takes into account the axial slope of the streamlines. Main design characteristics such as the mass-flow rate, total properties at component inlet, hub-to-tip ratio at component inlet, total enthalpy change for each stage, and the expected efficiency of each streamline at each stage are inputs to the method. Other inputs are the radial position and axial velocity component at one surface of revolution through the axial stages. These can be provided for either the hub, or the mean, or the tip location of the blading. In addition the user specifies the azimuthal deflection of the flow from the axial direction at each radius (or as a function of radius) at each blade row inlet and outlet. By construction the method eliminates radial variations of total enthalpy (work) and entropy at each blade row inlet and outlet. In an alternative formulation enthalpy variations across radial positions at each axial station are included in the analysis. The remaining three-dimensional velocity diagrams from hub to tip, and the radial location of the remaining streamlines, are obtained by solving the momentum equation using a predictor-corrector method. Examples for one turbine and one compressor design are included.


1984 ◽  
Vol 143 ◽  
pp. 23-46 ◽  
Author(s):  
S. Agrawal ◽  
A. F. Messiter

The local interaction of an oblique shock wave with an unseparated turbulent boundary layer at a shallow two-dimensional compression corner is described by asymptotic expansions for small values of the non-dimensional friction velocity and the flow turning angle. It is assumed that the velocity-defect law and the law of the wall, adapted for compressible flow, provide an asymptotic representation of the mean velocity profile in the undisturbed boundary layer. Analytical solutions for the local mean-velocity and pressure distributions are derived in supersonic, hypersonic and transonic small-disturbance limits, with additional intermediate limits required at distances from the corner that are small in comparison with the boundary-layer thickness. The solutions describe small perturbations in an inviscid rotational flow, and show good agreement with available experimental data in most cases where effects of separation can be neglected. Calculation of the wall shear stress requires solution of the boundary-layer momentum equation in a sublayer which plays the role of a new thinner boundary layer but which is still much thicker than the wall layer. An analytical solution is derived with a mixing-length approximation, and is in qualitative agreement with one set of measured values.


Sign in / Sign up

Export Citation Format

Share Document