scholarly journals Determining Oxidative Damage by Lipid Peroxidation Assay in Rat Serum

BIO-PROTOCOL ◽  
2019 ◽  
Vol 9 (12) ◽  
Author(s):  
Qian Tang ◽  
Yu-Wen Su ◽  
Cory Xian
2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
L Bosman ◽  
P Ellis ◽  
S Homa ◽  
D Griffin

Abstract Study question Is a commercially available lipid peroxidation assay sensitive enough to detect sperm lipid membrane damage and thus provide a novel indicator of male fertility status? Summary answer Provisional results demonstrate the novelty of creating a protocol to identify and quantify sperm lipid membrane damage and indicate possible insight into individual male fertility. What is known already Cytotoxic lipid aldehydes such as 4-hydroxynonenal (4HNE) created by the damaging effects of reactive oxygen species (ROS) have been studied extensively in sperm, as an indicator of male fertility. This is due to their connection with detrimental effects on sperm function such as morphology, acrosome reactions, motility and fertilization of the oocyte. Although literature states the mechanisms of damage caused to the lipid membrane of the sperm cell, there is no evidence of its quantification or usage as a commercial fertility indicator for human males. Study design, size, duration Since the assay is still being developed, there is no formal study size or duration. The goal of this pilot study is to determine whether a commercial lipid peroxidation assay can detect the difference between sperm with high levels of oxidative damage and control sperm cells. We used the remains of sperm samples initially collected for standard semen analysis, which were flash-frozen and then assayed with / without hydrogen peroxide treatment to induce oxidative damage. Participants/materials, setting, methods Frozen sperm from consenting donors (n = 21) were washed, optionally treated with hydrogen peroxide to induce oxidative damage, stained with a commercially available lipid peroxidation sensor (LPS, Abcam ab243377), and the resulting fluorescence quantitated by flow cytometry. Assay optimization varied the numbers of sperm input to the protocol, the concentration of the peroxidation sensor, the amount and duration of hydrogen peroxide treatment and the effect of paraformaldehyde (PFA) fixation of samples before or after staining. Main results and the role of chance Successful detection of lipid damage in control samples We observed a significant difference at a p-value < 0.05 between untreated samples and all positive controls with hydrogen peroxide concentrations stronger than 500uM (p < 0.038) . This indicates that we can detect sperm bearing oxidative damage, and establishes the conditions required to make a positive control sample. Establishment of assay parameters Results indicate the concentration of sperm input to the protocol is not a significant factor for concentrations below 5 million/ml. Low concentration samples thus do not require further dilution before testing. Correlation with DNA damage A significant direct strong positive Pearson correlation coefficient (R = 0.93, p < 0.023) was found between samples with low DNA fragmentation index (DFI (%), measured by flow cytometric staining with acridine orange) and the LPS flow cytometric data (%). Limitations, reasons for caution As yet our data only addresses high level lipid damage induced by peroxide treatment. It remains to be established whether it is possible to detect endogenous LPO damage due to oxidative stress in semen. Future work will correlate our data with motility information and oxidative stress data (measured by MiOXSYS). Wider implications of the findings: If we are able to develop a direct assay for sperm LPO, this will allow an additional avenue for testing patients with unexplained male infertility, which could in turn affect treatment choices and ART methodology. Improved diagnosis and treatment will potentially improve the lives of families with their fertility matters. Trial registration number Not applicable


Author(s):  
Paulina Iwan ◽  
Jan Stepniak ◽  
Malgorzata Karbownik-Lewinska

Abstract. Iodine is essential for thyroid hormone synthesis. Under normal iodine supply, calculated physiological iodine concentration in the thyroid is approx. 9 mM. Either potassium iodide (KI) or potassium iodate (KIO3) are used in iodine prophylaxis. KI is confirmed as absolutely safe. KIO3 possesses chemical properties suggesting its potential toxicity. Melatonin (N-acetyl-5-methoxytryptamine) is an effective antioxidant and free radical scavenger. Study aims: to evaluate potential protective effects of melatonin against oxidative damage to membrane lipids (lipid peroxidation, LPO) induced by KI or KIO3 in porcine thyroid. Homogenates of twenty four (24) thyroids were incubated in presence of either KI or KIO3 without/with melatonin (5 mM). As melatonin was not effective against KI-induced LPO, in the next step only KIO3 was used. Homogenates were incubated in presence of KIO3 (200; 100; 50; 25; 20; 15; 10; 7.5; 5.0; 2.5; 1.25 mM) without/with melatonin or 17ß-estradiol. Five experiments were performed with different concentrations of melatonin (5.0; 2.5; 1.25; 1.0; 0.625 mM) and one with 17ß-estradiol (1.0 mM). Malondialdehyde + 4-hydroxyalkenals (MDA + 4-HDA) concentration (LPO index) was measured spectrophotometrically. KIO3 increased LPO with the strongest damaging effect (MDA + 4-HDA level: ≈1.28 nmol/mg protein, p < 0.05) revealed at concentrations of around 15 mM, thus corresponding to physiological iodine concentrations in the thyroid. Melatonin reduced LPO (MDA + 4-HDA levels: from ≈0.97 to ≈0,76 and from ≈0,64 to ≈0,49 nmol/mg protein, p < 0.05) induced by KIO3 at concentrations of 10 mM or 7.5 mM. Conclusion: Melatonin can reduce very strong oxidative damage to membrane lipids caused by KIO3 used in doses resulting in physiological iodine concentrations in the thyroid.


Reproduction ◽  
2000 ◽  
pp. 143-149 ◽  
Author(s):  
RM Sainz ◽  
RJ Reiter ◽  
JC Mayo ◽  
J Cabrera ◽  
DX Tan ◽  
...  

Pregnancy is a physiological state accompanied by a high energy demand of many bodily functions and an increased oxygen requirement. Because of the increased intake and utilization of oxygen, increased levels of oxidative stress would be expected. In the present study, the degree of lipid peroxidation was examined in different tissues from non-pregnant and pregnant rats after the delivery of their young. Melatonin and other indole metabolites are known to be direct free radical scavengers and indirect antioxidants. Thus the effect of pinealectomy at 1 month before pregnancy on the accumulation of lipid damage was investigated in non-pregnant and pregnant rats after the delivery of their young. Malonaldehyde and 4-hydroxyalkenal concentrations were measured in the lung, uterus, liver, brain, kidney, thymus and spleen from intact and pinealectomized pregnant rats soon after birth of their young and at 14 and 21 days after delivery. The same parameters were also evaluated in intact and pinealectomized non-pregnant rats. Shortly after delivery, lipid oxidative damage was increased in lung, uterus, brain, kidney and thymus of the mothers. No differences were detected in liver and spleen. Pinealectomy enhanced this effect in the uterus and lung. It is concluded that during pregnancy high levels of oxidative stress induce an increase in oxidative damage to lipids, which in some cases is inhibited by the antioxidative actions of pineal indoles.


2020 ◽  
Vol 20 (7) ◽  
pp. 1010-1014 ◽  
Author(s):  
Dana Filatova ◽  
Christine Cherpak

Background: Hypersensitivity to nickel is a very common cause of allergic contact dermatitis since this metal is largely present in industrial and consumer products as well as in some commonly consumed foods, air, soil, and water. In nickel-sensitized individuals, a cell-mediated delayed hypersensitivity response results in contact to dermatitis due to mucous membranes coming in long-term contact with nickel-containing objects. This process involves the generation of reactive oxidative species and lipid peroxidation-induced oxidative damage. Immunologically, the involvement of T helper (h)-1 and Th-2 cells, as well as the reduced function of T regulatory cells, are of importance. The toxicity, mutagenicity, and carcinogenicity of nickel are attributed to the generation of reactive oxygen species and induction of oxidative damage via lipid peroxidation, which results in DNA damage. Objective: The aim of this research is to identify nutritionally actionable interventions that can intercept nickel-induced cell damage due to their antioxidant capacities. Conclusion: Nutritional interventions may be used to modulate immune dysregulation, thereby intercepting nickel-induced cellular damage. Among these nutritional interventions are a low-nickel diet and an antioxidant-rich diet that is sufficient in iron needed to minimize nickel absorption. These dietary approaches not only reduce the likelihood of nickel toxicity by minimizing nickel exposure but also help prevent oxidative damage by supplying the body with antioxidants that neutralize free radicals.


2021 ◽  
Vol 82 (1) ◽  
Author(s):  
Sidra Perveen ◽  
Shalu Kumari ◽  
Himali Raj ◽  
Shahla Yasmin

Abstract Background Fluoride may induce oxidative stress and apoptosis. It may also lead to neurobehavioural defects including neuromuscular damage. The present study aimed to explore the effects of sub lethal concentrations of sodium fluoride (NaF) on the lifespan and climbing ability of Drosophila melanogaster. In total, 0.6 mg/L and 0.8 mg/L of NaF were selected as sublethal concentrations of NaF for the study. Lifespan was measured and climbing activity assay was performed. Results The study showed significant decrease in lifespan of flies treated with fluoride. With increasing age, significant reduction in climbing activity was observed in flies treated with sodium fluoride as compared to normal (control) flies. Flies treated with tulsi (Ocimum sanctum) and NaF showed increase in lifespan and climbing activity as compared to those treated with NaF only. Lipid peroxidation assay showed significant increase in malondialdehyde (MDA) values in the flies treated with NaF as compared to control. The MDA values decreased significantly in flies treated with tulsi mixed with NaF. Conclusions The results indicate that exposure to sub lethal concentration of NaF may cause oxidative stress and affect the lifespan and climbing activity of D. melanogaster. Tulsi extract may help in reducing the impact of oxidative stress and toxicity caused by NaF.


1996 ◽  
Vol 11 (supp5) ◽  
pp. 48-53 ◽  
Author(s):  
J. R. Requena ◽  
M.-X. Fu ◽  
M. U. Ahmed ◽  
A. J. Jenkins ◽  
T. J. Lyons ◽  
...  

Author(s):  
Krzysztof Gwoździński ◽  
Marta Gonciarz ◽  
Ewa Kilańczyk ◽  
Aleksandra Kowalczyk ◽  
Anna Pieniążek ◽  
...  

Antioxidant enzyme activities and lipid peroxidation inIn the present work we have studied some of the indicators of oxidative damage of the digestive gland tissue of two populations of mussels


Antioxidants ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 70 ◽  
Author(s):  
Cuauhtémoc Sandoval-Salazar ◽  
Cecilia Oviedo-Solís ◽  
Edmundo Lozoya-Gloria ◽  
Herlinda Aguilar-Zavala ◽  
Martha Solís-Ortiz ◽  
...  

It has been proposed that there is a correlation between high-fat diet (HFD), oxidative stress and decreased γ-aminobutyric acid (GABA) levels, but this has not been thoroughly demonstrated. In the present study, we determined the effects of strawberry extract intake on the oxidative stress and GABA levels in the frontal cortex (FC) of obese rats. We observed that an HFD increased lipid and protein oxidation, and decreased GABA levels. Moreover, UV-irradiated strawberry extract (UViSE) decreased lipid peroxidation but not protein oxidation, whereas non-irradiated strawberry extract (NSE) reduced protein oxidation but not lipid peroxidation. Interestingly, NSE increased GABA concentration, whereas UViSE was not as effective. In conclusion, our results suggest that an HFD increases oxidative damage in the FC, whereas strawberry extract intake may ameliorate the disturbances associated with HFD-induced oxidative damage.


Sign in / Sign up

Export Citation Format

Share Document