scholarly journals THE EFFECTS OF r-HDPE/r-PP FORMULATION RATIO INTO MECHANICAL, THERMAL AND MORPHOLOGICAL BEHAVIOR OF r-HDPE/r-PP POLYMERIC BLENDS

Author(s):  
Jeefferie Abd Razak ◽  
◽  
Siti Zaleha Wahid ◽  
Noraiham Mohamad ◽  
Poppy Puspitasari ◽  
...  

This study has reported the effects of different formulation ratio between recycled high density polyethylene (r-HDPE) and recycled polypropylene (r-PP) into the resulted mechanical, thermal and morphological properties of r-HDPE/r-PP polymeric blends. About five (5) different formulation ratio of r-HDPE/r-PP have been prepared and tested. The best combination ratio between r-HDPE and r-PP was determined in this work. It was found that the 70/30 wt.% of r- HDPE/r-PP blend possessed an outstanding mechanical and physical strength. About 59.80% and 2.30% of positive improvement in comparison to 0/100 wt.% of r-HDPE/r-PP was achieved for both of tensile strength and hardness, respectively. Interestingly, for 70/30 wt.% of r-HDPE/r-PP blend had also experienced major increased in their elongation at break up to 473%. The fracture morphological behavior of the tested samples that were observed via SEM observation, had established the interaction between the structure and properties of produced r-HDPE/r-PP blends, especially on the miscibility state between the r-HDPE and r-PP phases. Thermal evaluation by using the DSC had confirmed the partial miscibility state due to dominant peak shifting at 120 - 140°C and obvious melting peak reduction pattern. Overall, from this study, it was found that the blending between r-HDPE and r-PP into r-HDPE/r-PP blends are feasible to improve the properties of primary phase.

2015 ◽  
Vol 735 ◽  
pp. 70-74
Author(s):  
Ibrahim Mohammed Inuwa ◽  
Azman Hassan ◽  
Sani Amril Samsudin

This work investigates the effect of compatibilizer concentration on the mechanical properties of compatibilized polyethylene terephthalate (PET) /polypropylene (PP) blends. A blend containing 70 % (wt) PET, 30 % (wt) PP and 5 - 15 phr compatibilizers were compounded using counter rotating twin screw extruder and fabricated into standard test samples using injection molding. The compatibilizer used is styrene-ethylene-butylene-styrene grafted maleic anhydride triblock copolymer (SEBS-g-MAH). Morphological studies show that the particle size of the dispersed PP phase is dependent on the compatibilizer content up to 10 phr. Impact strength and elongation at break showed maximum values with the addition of 10 phr SEBS-g-MAH and a corresponding decrease in flexural and young’s moduli; and strengths.. Overall the mechanical properties of PET/PP blends depend on the control of the morphology of the blend and can be achieved by effective compatibilization using 10 phr SEBS-g-MAH.


2012 ◽  
Vol 32 (4-5) ◽  
pp. 291-299 ◽  
Author(s):  
Suhailah Mohd Sukri ◽  
Nor Liyana Suradi ◽  
Agus Arsad ◽  
Abdul Razak Rahmat ◽  
Azman Hassan

Abstract The objective of this work was to investigate the effect of kenaf contents on mechanical, thermal and morphological properties of recycled polyamide-6 (rPA-6)/recycled polypropylene (rPP) blends. Kenaf was used to enhance the properties of composites. Alkali treating of kenaf by sodium hydroxide (NaOH) and combination with propylene grafted maleic anhydride (PPgMA) as a compatibilizer produced good adhesion both between rPP and rPA-6, and rPA-6/rPP and kenaf. Tensile, flexural and Izod impact tests were evaluated to study the mechanical properties. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) tests were carried out to investigate thermal properties. Scanning electron microscopy (SEM) was performed for morphological analysis. Generally, the mechanical properties were successfully enhanced, especially Young’s modulus, flexural modulus, flexural strength and elongation at break, while there were some problems which caused the tensile strength and impact strength to be inferior. Thermal analysis showed that the crystallization of composites decreased as kenaf contents were increased. SEM showed a problem with kenaf and rPP/rPA-6 compatibility, which led to insufficient matrix at some places and agglomeration of kenaf at other places. Morphologically, there was unidirectional presence of kenaf in rPP main composites and random orientation in rPA-6 main composites.


2014 ◽  
Vol 970 ◽  
pp. 312-316
Author(s):  
Sujaree Tachaphiboonsap ◽  
Kasama Jarukumjorn

Thermoplastic starch (TPS)/poly (lactic acid) (PLA) blend and thermoplastic starch (TPS)/poly (lactic acid) (PLA)/poly (butylene adipate-co-terephthalate) (PBAT) blend were prepared by melt blending method. PLA grafted with maleic anhydride (PLA-g-MA) was used as a compatibilizer to improve the compatibility of the blends. As TPS was incorporated into PLA, elongation at break was increased while tensile strength, tensile modulus, and impact strength were decreased. Tensile properties and impact properties of TPS/PLA blend were improved with adding PLA-g-MA indicating the enhancement of interfacial adhesion between PLA and TPS. With increasing PBAT content, elongation at break and impact strength of TPS/PLA blends were improved. The addition of TPS decreased glass transition temperature (Tg), crystallization temperature (Tc), and melting temperature (Tm) of PLA. Tgand Tcof TPS/PLA blend were decreased by incorporating PLA-g-MA. However, the presence of PBAT reduced Tcof TPS/PLA blend. Thermal properties of TPS/PLA/PBAT blends did not change with increasing PBAT content. SEM micrographs revealed that the compatibilized TPS/PLA blends exhibited finer morphology when compared to the uncompatibilized TPS/PLA blend.


2013 ◽  
Vol 844 ◽  
pp. 89-92
Author(s):  
Boripat Sripornsawat ◽  
Azizon Kaesaman ◽  
Charoen Nakason

Maleated natural rubber (MNR) was synthesized and formulated to prepare thermoplastic natural rubber (TPNR) by blending with co-polyamide (COPA). It was found that 100% modulus, tensile strength, elongation at break, hardness and degree of swelling increased with increasing proportion of COPA. However, degree of swelling and tension set value decreased which reflects enhancing of rubber elasticity. Dynamic properties were also determined by a rotor less oscillating shear rheometer (Rheo Tech MDpt). It was found that increasing proportion of MNR caused increasing of storage modulus and complex viscosity but decreasing tan δ value. Morphological properties were also determined by SEM technique. It was found that the MNR/COPA simple blends with the proportion of rubber 40, 50 and 60 wt% exhibited the co-continuous phase structures.


2012 ◽  
Vol 262 ◽  
pp. 418-421 ◽  
Author(s):  
Xiao Lin Zhang ◽  
Xiang Feng Bo

Use of resource-rich wastepaper/recycled plastics as raw materials in the production of wood-plastic composites(WPC) can alleviate the shortage of wood resources, reduce pollution and has a attractive prospect. In this paper, old newspaper fiber(ONPF)/recycled-polypropylene(rPP) Wood-Plastics Composite(WPC) was prepared by means of mixing processing and compression molding. The effects of technical conditions on the mechanical properties of WPC were investigated. The structure of composite was characterized by means of FTIR and SEM. The results show that, Wastepaper and waste-PP can be used as raw materials for preparation of WPC. The suitable preparation process for wastepaper/rPP composites was: wastepaper fiber 20%, blending temperature 175°C, blending time 15min, molding pressure 12MPa, molding temperature 175°C and molding time 10min. In these conditions, tensile strength and flexural strength of wastepaper/rPP composites are 23.6MPa and 28.8MPa respectively, increased by 20.9% and 12.6% compared to those of rPP matrix. The elongation at break of WPC is 10.6%, and the flexural modulus is 1328.9MPa,increased by 7.7% compared to those of rPP matrix. The structure analysis found that there is no chemical reaction between the fibers and the matrix. The research results have important practical significance in the field of printing and packaging waste recycling and utilization, environmental protection and energy saving.


2007 ◽  
Vol 42 (13) ◽  
pp. 5007-5012 ◽  
Author(s):  
Pankaj Agrawal ◽  
Silvia I. Oliveira ◽  
E. M. Araújo ◽  
Tomas J. A. Melo

2018 ◽  
Vol 32 (8) ◽  
pp. 1056-1067 ◽  
Author(s):  
Matheus Poletto

In this study, composites with interesting mechanical and thermal properties were prepared using chemically modified vegetable oil as coupling agent in wood-fibers-reinforced recycled polypropylene. Soybean oil was reacted with maleic anhydride to produce maleated soybean oil (MASO). The mechanical, thermal, and morphological properties of the composite were evaluated. The usage of MASO as a coupling agent clearly improved the interfacial adhesion between wood fibers and the polypropylene matrix and increased the mechanical and thermal properties evaluated. Based on the obtained results, it is concluded that MASO can act as an alternative source of coupling agent dispensing with the addition of petroleum-based compatibilizers to improve the mechanical and thermal properties of composites reinforced with natural fibers.


2017 ◽  
Vol 751 ◽  
pp. 264-269
Author(s):  
Nipawan Yasumlee ◽  
Sirirat Wacharawichanant

The effects of microcrystalline cellulose (MCC) on mechanical, thermal and morphological properties of polyoxymethylene (POM)/polypropylene (PP) blends at different compositions were investigated. The blends and composites were prepared by melt mixing using an internal mixer at 200°C. Scanning electron microscopy (SEM) analysis revealed phase separation between POM and PP phases due to the difference in polarity of POM and PP. When adding the MCC in the blends the morphology slightly changed due to the weak interaction between MCC and polymer phases. Incorporation of MCC at 5 phr could improve Young’s modulus of POM/PP blends. The storage modulus of the blends was improved after adding MCC 5 phr due to reinforcing effect of the MCC. The thermal properties found that the addition of MCC had no effect on the melting temperature of the blends. The blends exhibited higher decomposition temperature than pure POM. The blends showed the decomposition temperatures increased when increasing amount of PP content, which were higher than pure POM. Therefore, it may be inferred that the addition of PP could enhance the thermal stability of the POM/PP blends, but the addition of MCC did not improve the thermal stability.


2020 ◽  
Vol 981 ◽  
pp. 144-149
Author(s):  
Ros Azlinawati Ramli ◽  
Muhammad Syafiq Zulkifli ◽  
Nurul Ekmi Rabat

The objective of this research is to investigate the effect of incorporating graphite filler on mechanical, thermal and morphological properties of wood recycled plastic composites (WrPC). WrPC was prepared using recycled polypropylene (rPP), kenaf core, maleic anhydride polypropylene (MAPP) and graphite filler. The graphite content in WrPC is 3 phr. All materials were premixed manually and fed into a single screw extruder and compression molded to prepare mechanical test specimens. The effect of graphite on tensile properties, impact strength, glass transition temperature (Tg) and morphological properties of WrPC were studied. Tensile strength was increased from 6.81 MPa to 10.07 MPa due to stronger interfacial adhesion between graphite and kenaf/rPP. However, the tensile modulus decreased significantly with the incorporation of graphite. Impact strength of WrPC was increased from 2.48 kJ/m2 to 2.83 kJ/m2 due to the present of graphite that gave effective distribution of applied stress and increase resistance of crack propagation. DSC results indicated that Tg of graphite/WrPC is comparable to WPC at 163°C. The internal structure of WrPC showed the addition of graphite had filled the voids and lead to smooth morphology.


Sign in / Sign up

Export Citation Format

Share Document