scholarly journals Quality Function Deployment (QFD) and TRIZ in Briquette Cookstove Design and Simulation

2021 ◽  
Vol 12 (2) ◽  
pp. 349-359
Author(s):  
Niswatun Faria ◽  
◽  
Kuntum Khoiro Ummatin ◽  
Mochammad Annas Junianto ◽  
Tedy Eko Budiharso

Poor cookstove design can harm the user's health and environment. This research aims to obtain an efficient cookstove design, environmentally friendly and operated easily. The cookstove design process using a combination of QFD and TRIZ. QFD able to capture customer needs through a questionnaire and interview. The data collected then processed to build a House of Quality (HoQ), one of the tools in QFD. QFD results in the design parameter of the briquette cookstove, which is incorporated in the concept design. The TRIZ method is utilized to understand the problem that might occur in the concept design and focus on solving the root causes. The next step is a detailed design where the dimensions, combustion chamber capacity, and supporting features are explained. The combination of QFD and TRIZ result in a briquette cookstove concept design which is easy to clean and operate. The combustion system is Top-lit Up-Draft (TLUD). The burning chamber has two air inlets, namely primary and secondary. The primary air inlet supplies the air from the bottom of the burning chamber, partially burns the briquette, and produces flue gas. The secondary air inlet is in the shape of an oval to supply air in the burning chamber's upper part to burn the flue gas completely. A complete combustion process will increase combustion efficiency and reduce emissions. A computational simulation shows the velocity distribution inside the burning chamber.

2006 ◽  
Vol 10 (4) ◽  
pp. 121-130
Author(s):  
Dragoslava Stojiljkovic ◽  
Vladimir Jovanovic ◽  
Milan Radovanovic ◽  
Nebojsa Manic ◽  
Ivo Radulovic

The aim of the investigation was to make some reconstructions on the existing stove used for cooking and baking and to obtain the combined cooker-boiler which will fulfill the demands of European standard EN 12815. Implementation of modern scientific achievements in the field of combustion on stoves and furnaces fired on solid fuels was used. During the investigations four various constructions were made with different fresh air inlet and secondary air supply with the intention to obtain more complete combustion with increased efficiency and reduced CO emission. Three different fuels were used: firewood, coal, and wood briquette. A numerous parameters were measured: fuel weight changes during the combustion process, temperature of inlet and outlet water, flue gas composition (O2, CO, SO2, CO2, NOx), flue gas temperature, ash quantity etc. The result of the investigations is the stove with the efficiency of more than 75% - boiler Class 1 (according EN 12815) and CO emission of about 1% v/v. The results obtained during the measurements were used as parameters for modeling of combustion process. .


Author(s):  
Mark Pe´rilleux ◽  
Dirk Eeraerts

The implementation of the European-directive requiring a residence time of at least two seconds at a temperature above 850°C (1562°F), the change in waste characteristics, and the pursuit of higher thermal efficiencies has pushed many of the existing WtE plants in Europe to their operational limits. Most existing WtE plants were not designed to operate under these conditions and may require modifications to the combustion system. Within the SEGHERS better technology (SEGHERS) company, the SEGHERS-IBB-Prism was developed to deal with the cause of these problems, which are essentially related to insufficient mixing and burnout of the flue gases in the combustion area. In the Boiler Prism the flue gas flow is divided into two parallel flows prior to entering the first radiant pass of the boiler. This division is achieved by means of a prism shaped construction, which is water-cooled and integrated with the natural circulation system of the boiler. Additional secondary air injection nozzles are fitted in the prism. This technology results in a more uniform flue gas temperature and a complete combustion of the flue gas immediately above the prism. In the Bonn Plant, these improvements in the combustion process resulted in a decrease of the fireside cleaning requirements of more than 50%.


2011 ◽  
Vol 383-390 ◽  
pp. 2603-2607
Author(s):  
Yao Yi ◽  
Guang Jian Chen ◽  
Jin Ling Jia

Focusing on energy-saving issues of boiler, this paper finds out the combustion conditions inside boiler furnace by monitoring and analysis on oxygen content of flue gas, carbon content of fly ash, CO and CO2 contents. The intelligent control of boiler combustion was achieved and combustion efficiency was rosen. Using neural network controlling model, automatic optimization of oxygen delivery volume,coal delivery volume, the total wind pressure of primary air, the secondary air-door opening degree and furnace negative pressure were achieved, and the boiler efficiency increasing by 5 ~ 7%.


Author(s):  
Jens Sohnemann ◽  
Walter Scha¨fers ◽  
Armin Main

The efforts for reducing the emissions into the atmosphere start already in the furnace and are completed by an effective flue gas cleaning system. This implies the necessity for design developments of key components for a modern EfW plant. For the core component of the firing system — the grate — Fisia Babcock Environment (FBE) is using forward moving grates as well as roller grates. The moving grate, which is used in the great majority of all our plants, has specific characteristics for providing uniform combustion and optimal burnout. These include, amongst others: - Uniform air supply by means of specific grate bar geometry. - Two grate steps in direction of waste transport for optimum burnout. - Flexible adaptation of the combustion process to the respective conditions and requirements by zone-specific air distribution and transport velocity of waste on grate. - Combustion control adapted to the specific plant for ensuring a consistent combustion process and production of energy. In addition to these features influencing the emissions the moving grate exhibits also specific characteristics regarding the mechanical aspects allowing low-maintenance and reliable operation. For optimum flue gas burnout a good oxygen distribution after leaving the combustion zone is required. For ensuring this, the injection of secondary air is designed to produce a double-swirl, developed by FBE. Final reduction of the nitrogen constituents NO and NO2 to the stipulated emission value is achieved by the SNCR process. As well in this respect, there is a great amount of experience available. Besides these measures regarding the combustion process, this paper also reports about flue gas cleaning systems. In this field the FBE CIRCUSORB® process is presented and compared with the known dry absorption process. CIRCUSORB® is a lime-based flue gas cleaning process with continuous recirculation of the moistened reaction product and simultaneous addition of fresh hydrated lime. The flue gas temperature downstream of the economizer can be selected very low and permits in this way maximized utilization of the energy. The evaporation of the moisture from the reaction product (flash evaporation) effects final cooling down of the flue gas to optimum process temperature and improves at the same time SO2 separation. This reduces the technical investment required for the flue gas cleaning process. The total of all measures taken and the robust design of all components permit economical plant operation while complying with the stipulated emission limit values.


2012 ◽  
Vol 268-270 ◽  
pp. 898-901
Author(s):  
Shui E Yin ◽  
Jun Wu

A mathematical model was presented for the combustion of municipal solid waste in a 350t/d MSW-burning incinerator. Numerical simulations were performed to predict the temperature and the species distributions in the furnace, with practical operational conditions taken into account. When the total air supply is constant, reducing primary air and increasing secondary air properly results in the higher total temperature of the furnace and the more oxygen concentration at the furnace outlet, and thereby contributes to the complete combustion of combustibles so that an optimal combustion effect can be achieved.


Author(s):  
Binash Imteyaz ◽  
Mohamed A. Habib

With the ever rising concern of global warming, carbon capture is gaining the reputation of one of the most challenging fields of research. A very promising technology to capture CO2 is oxy-combustion. Oxy-combustion offers several advantages over conventional combustion technologies, such as flue gas volume reduction, high combustion efficiency, low fuel consumption and significant reduction in NOx emissions. Liquid fuel is available and it is the most widely used source of energy in the world. Easy handling and transportation, less storage volume and higher flame temperature are some of the features of liquid fuel which give it an upper hand over other sources. In this study, an experimental work on oxygen enriched combustion of ethanol in a vertical reactor by Lacas F. et. al. has been modeled numerically. Non-premixed model using Probability Density Function has been incorporated to simulate the combustion process of ethanol droplets. Predicted combustion characteristics are found to be in good compliance with the experimental data. In addition to this, effects of dilution of carbon-dioxide in oxygen on the flame properties have also been presented. Combustion of ethanol in oxygen-carbon dioxide environment has been compared with that of the conventional air environment.


2015 ◽  
Vol 137 (3) ◽  
Author(s):  
Binash Imteyaz ◽  
Mohamed A. Habib

With the ever-rising concern of global warming, carbon capture is gaining the reputation of one of the most challenging fields of research. A very promising technology to capture CO2 is oxy-combustion. Oxy-combustion offers several advantages over conventional combustion technologies, such as flue–gas volume reduction, high combustion efficiency, low fuel consumption, and significant reduction in NOx emissions. Liquid fuel is available and it is the most widely used source of energy in the world. Easy handling and transporting, less storage volume and higher flame temperature are some of the features of liquid fuel which give it an upper hand over other sources. In this study, an experimental work on oxygen enriched combustion of ethanol in a vertical reactor by Lacas et al. (2005, “Experimental Study of Air Dilution in Oxy-Liquid Fuel Flames,” Proc. Combust. Inst., 30(2), pp. 2037–2045) has been modeled numerically. Nonpremixed model using probability density function (PDF) has been incorporated to simulate the combustion process of ethanol droplets. Predicted combustion characteristics are found to be in good compliance with the experimental data. In addition to this, effects of dilution of carbon dioxide in oxygen on the flame properties have also been presented. Combustion of ethanol in oxygen–carbon dioxide environment has been compared with that of the conventional air environment.


1998 ◽  
Vol 120 (3) ◽  
pp. 474-480 ◽  
Author(s):  
T. Nakata ◽  
M. Sato ◽  
T. Hasegawa

Ammonia contained in coal-gasified fuel is converted to nitrogen oxides (NOx) in the combustion process of a gas turbine in integrated coal gasification combined cycle (IGCC) system. Research data on fuel-NOx formation are insufficient, and there still remains a wide explored domain. The present research aims at obtaining fundamental knowledge of fuel-NOx formation characteristics by applying reaction kinetics to gas turbine conditions. An instantaneous mixing condition was assumed in the cross section of a gas turbine combustor and both gradual mixing condition and instantaneous mixing condition were assumed at secondary air inlet section. The results may be summarized as follows: (1) in the primary combustion zone under fuel rich condition, HCN and other intermediate products are formed as ammonia contained in the fuel decomposes; (2) formation characteristics of fuel-NOx are affected by the condition of secondary air mixing; and (3) the conversion ratio from ammonia to NOx declines as the pressure inside the combustor rises under the condition of gradual mixing at the secondary air inlet. These results obtained agreed approximately with the experimentation.


2011 ◽  
Vol 145 ◽  
pp. 11-15
Author(s):  
M. Tayyeb Javed ◽  
Bill Nimmo

The escalation of ambient CO2 concentration due excessive use of coal in power generation has put impetus on the development of technologies for utilization of vast and cheap resources available through out the world. Eco-scrub, Oxygen enriched and oxyfuel combustion are among the promising technologies guaranteeing the low carbon future. In our recent investigations, pulverized coal (Russian) was fired in a 20 kW down fired combustion rig under simulated exhaust gas recirculation. The effect of CO2 at burner inlet on the combustion efficiency, flue gas CO2 and NO emission was studied. The test conditions were essentially achieved by replacing the secondary air with a mixture of O2 and CO2 in different proportion. The test conditions do imitate the four key conditions for eco-scrub project. The basic theme under eco-scrub project is to use limited oxygen addition to reduce the volume of flue gas for processing, increase the efficiency of post combustion scrubbing due to higher CO2 levels and reduced the size and cost of post combustion capture. The exhaust gas CO2 was observed to increase linearly with increasing the CO2 at burner inlet. The flue gas concentration for 35% and 45% flue gas recycle was recorded to be 24% and 30% respectively. The NO emission was most of the time under the base line emission of 818 ppm. A maximum of 66% reduction was observed when the burner inlet CO2 was 45% and 21% O2. How ever an increase of 37% was seen when 80% of the secondary air was replaced with a 50%O2-50%CO2 mixture.


2015 ◽  
Vol 36 (3) ◽  
pp. 305-320 ◽  
Author(s):  
Sandile Peta ◽  
Chris du Toit ◽  
Reshendren Naidoo ◽  
Walter Schmitz ◽  
Louis Jestin

Abstract To minimize oxides of nitrogen (NOx) emission, maximize boiler combustion efficiency, achieve safe and reliable burner combustion, it is crucial to master global boiler and at-the-burner control of fuel and air flows. Non-uniform pulverized fuel (PF) and air flows to burners reduce flame stability and pose risk to boiler safety by risk of reverse flue gas and fuel flow into burners. This paper presents integrated techniques implemented at pilot ESKOM power plants for the determination of global boiler air/flue gas distribution, wind-box air distribution and measures for making uniform the flow being delivered to burners within a wind-box system. This is achieved by Process Flow Modelling, at-the-burner static pressure measurements and CFD characterization. Global boiler mass and energy balances combined with validated site measurements are used in an integrated approach to calculate the total (stoichiometric + excess) air mass flow rate required to burn the coal quality being fired, determine the actual quantity of air that flows through the burners and the furnace ingress air. CFD analysis and use of at-the-burner static, total pressure and temperature measurements are utilized in a 2-pronged approach to determine root-causes for burner fires and to evaluate secondary air distribution between burners.


Sign in / Sign up

Export Citation Format

Share Document