scholarly journals Landscape research in Croatia from 1945 to 2019

2021 ◽  
Vol 83 (1) ◽  
pp. 25-56
Author(s):  
Valerija Butorac ◽  
◽  
Nenad Buzjak ◽  

In Croatia, as elsewhere, significant changes have occurred in the landscape over time, due to changes in land use, climate change, and general anthropogenic activities. Accordingly, the need for deeper and more intensive understanding of landscape properties has arisen, in order to ensure adequate land management and protection. The aim of this study is to give an overview of the state of scientific landscape research in Croatia, and determine the stakeholders, methodologies, various research topics, and degree of research and knowledge regarding Croatia’s landscapes. Over the past decade, there has been an increased interest in landscape research, with two clear landscape research approaches emerging: geographic approach and (landscape) architecture approach, that differ in terms of the issues examined, methodologies applied, and spatial context.

Author(s):  
Lang Wang ◽  
Zong-Liang Yang

The terms “land cover” and “land use” are often used interchangeably, although they have different meanings. Land cover is the biophysical material at the surface of the Earth, whereas land use refers to how people use the land surface. Land use concerns the resources of the land, their products, and benefits, in addition to land management actions and activities. The history of changes in land use has passed through several major stages driven by developments in science and technology and demands for food, fiber, energy, and shelter. Modern changes in land use have been increasingly affected by anthropogenic activities at a scale and magnitude that have not been seen. These changes in land use are largely driven by population growth, urban expansion, increasing demands for energy and food, changes in diets and lifestyles, and changing socioeconomic conditions. About 70% of the Earth’s ice-free land surface has been altered by changes in land use, and these changes have had environmental impacts worldwide, ranging from effects on the composition of the Earth’s atmosphere and climate to the extensive modification of terrestrial ecosystems, habitats, and biodiversity. A number of different methods have been developed give a thorough understanding of these changes in land use and the multiple effects and feedbacks involved. Earth system observations and models are examples of two crucial technologies, although there are considerable uncertainties in both techniques. Cross-disciplinary collaborations are highly desirable in future studies of land use and management. The goals of mitigating climate change and maintaining sustainability should always be considered before implementing any new land management strategies.


2020 ◽  
Vol 93 (5) ◽  
pp. 675-684
Author(s):  
Nicolas Latte ◽  
Philippe Taverniers ◽  
Tanguy de Jaegere ◽  
Hugues Claessens

Abstract To increase forest resilience to global change, forest managers are often directing forest stands towards a broader diversity of tree species. The small-leaved lime (Tilia cordata Mill.), a rare and scattered species in northwestern Europe, is a promising candidate for this purpose. Its life traits suggest a high resilience to climate change and a favourable impact on forest ecosystem services. This study used a dendroecological approach to assess how lime tree radial growth had responded to the past climatic change. First, 120 lime trees from nine sites were selected in southern Belgium based on criteria adapted to the rareness of the species. Chronology quality was assessed and resulting tree-ring series were validated at site and region levels. Second, a range of dendrochronological methods was used to analyze the changes over time in the variability and long-term trends of lime tree growth and their relation to climate during the period 1955–2016. Last, behaviour of lime trees was compared with that of beech from the same region and time period. For this purpose, the same methodology was applied to an additional beech tree-ring dataset (149 trees from 13 sites). Beech is the climax tree species of the region, but is known to be drought-sensitive and has shown weaknesses in the current climate. The quality of our tree-ring series attests that dendroecological investigation using rare and scattered species is possible, opening the way to further analysis on other such lesser-known forest tree species. The analysis showed that the small-leaved lime had been resilient to the past climatic change in multiple ways. Lime growth increased during the preceding decades despite an increased frequency and intensity of stressful climatic events. Lime growth quickly recovered in the years following the stresses. The growth–climate relationships were either stable over time or had a positive evolution. The behaviour of lime contrasted strongly with that of beech. Lime performed better than beech in every analysis. Small-leaved lime is thus a serious candidate for addressing climate change challenges in the region. It should be considered by forest managers planning to improve the sustainability and resilience of their forests, in particular in vulnerable beech stands.


2020 ◽  
Vol 5 (11) ◽  
pp. 92 ◽  
Author(s):  
Rick Kool ◽  
Judy Lawrence ◽  
Martin Drews ◽  
Robert Bell

Sea-level rise increasingly affects low-lying and exposed coastal communities due to climate change. These communities rely upon the delivery of stormwater and wastewater services which are often co-located underground in coastal areas. Due to sea-level rise and associated compounding climate-related hazards, managing these networks will progressively challenge local governments as climate change advances. Thus, responsible agencies must reconcile maintaining Levels of Service as the impacts of climate change worsen over the coming decades and beyond. A critical question is whether such networks can continue to be adapted/protected over time to retain Levels of Service, or whether eventual retreat may be the only viable adaptation option? If so, at what performance threshold? In this paper, we explore these questions for stormwater and wastewater, using a dynamic adaptive pathway planning (DAPP) approach designed to address thresholds and increasing risk over time. Involving key local stakeholders, we here use DAPP to identify thresholds for stormwater and wastewater services and retreat options, and for developing a comprehensive and area-specific retreat strategy comprising pathway portfolios, retreat phases, potential land use changes, and for exploring pathway conflicts and synergies. The result is a prototype for an area near Wellington, New Zealand, where a managed retreat of water infrastructure is being considered at some future juncture. Dynamic adaptive strategies for managed retreats can help to reduce future disruption from coastal flooding, signal land use changes early, inform maintenance, and allow for gradual budget adjustments by the agencies that can manage expenditure over time. We present this stepwise process in a pathway form that can be communicated spatially and visually, thereby making a retreat a more manageable, sequenced, adaptation option for water agencies, and the communities they serve.


2020 ◽  
Vol 62 (4) ◽  
pp. 288-305
Author(s):  
Addo Koranteng ◽  
Isaac Adu-Poku ◽  
Emmanuel Donkor ◽  
Tomasz Zawiła-Niedźwiecki

AbstractLand use and land cover (LULC) terrain in Ghana has undergone profound changes over the past years emanating mainly from anthropogenic activities, which have impacted countrywide and sub-regional environment. This study is a comprehensive analysis via integrated approach of geospatial procedures such as Remote Sensing (RS) and Geographic Information System (GIS) of past, present and future LULC from satellite imagery covering Ghana’s Ashanti regional capital (Kumasi) and surrounding districts. Multi-temporal satellite imagery data sets of four different years, 1990 (Landsat TM), 2000 (Landsat ETM+), 2010 (Alos and Disaster Monitoring Constellation-DMC) and 2020 (SENTINEL), spanning over a 30-year period were mapped. Five major LULC categories – Closed Forest, Open Forest, Agriculture, Built-up and Water – were delineated premised on the prevailing geographical settings, field study and remote sensing data. Markov Cellular Automata modelling was applied to predict the probable LULC change consequence for the next 20 years (2040). The study revealed that both Open Forest and Agriculture class categories decreased 51.98 to 38.82 and 27.48 to 20.11, respectively. Meanwhile, Built-up class increased from 4.8% to 24.8% (over 500% increment from 1990 to 2020). Rapid urbanization caused the depletion of forest cover and conversion of farmlands into human settlements. The 2040 forecast map showed an upward increment in the Built-up area up to 35.2% at the expense of other LULC class categories. This trend from the past to the forecasted future would demand that judicious LULC resolutions have to be made to keep Ghana’s forest cover, provide arable land for farming activities and alleviate the effects of climate change.


2019 ◽  
Vol 9 (3) ◽  
pp. 138
Author(s):  
Otacilio Antunes Santana ◽  
José Imaña Encinas ◽  
Bárbara Alves de Sousa ◽  
Sandra Razana Silva do Monte ◽  
Valéria Sandra de Oliveira Costa

The local climate change was registered over time (1992-2018) on different land use ecosystems, in Brazilian Semiarid area. The aimed of this work was to analyze aridity index in five ecosystems (Wild Caatinga, Caatinga on management, Cactaceae field, Eucalyptus reforestation, and Fabaceae crop), and to compare this index with environment variables. Meteorological towers and measures with porometer and psychrometers were carried out to collect the data. The main result was that the studied areas are hotter and drier. The Fabaceae crop and Eucalyptus reforestation studied ecosystems already are on Arid classification according with registered aridity index. Wild Caatinga and Cactaceae field ecosystems are on Semiarid classification, and over time Caatinga on management ecosystem pass from Semiarid to Arid classification. The five ecosystems together are classified on Arid climate. The VPD and Ψsoil were the variables more directly proportional with Aridity index to analyzed ecosystems.


2016 ◽  
Vol 13 (5) ◽  
pp. 1519-1536 ◽  
Author(s):  
Maria Stergiadi ◽  
Marcel van der Perk ◽  
Ton C. M. de Nijs ◽  
Marc F. P. Bierkens

Abstract. Climate change and land management practices are projected to significantly affect soil organic carbon (SOC) dynamics and dissolved organic carbon (DOC) leaching from soils. In this modelling study, we adopted the Century model to simulate past (1906–2012), present, and future (2013–2100) SOC and DOC levels for sandy and loamy soils typical of northwestern European conditions under three land use types (forest, grassland, and arable land) and several future scenarios addressing climate change and land management change. To our knowledge, this is the first time that the Century model has been applied to assess the effects of climate change and land management on DOC concentrations and leaching rates, which, in combination with SOC, play a major role in metal transport through soil. The simulated current SOC levels were generally in line with the observed values for the different kinds of soil and land use types. The climate change scenarios result in a decrease in both SOC and DOC for the agricultural systems, whereas for the forest systems, SOC is projected to slightly increase and DOC to decrease. An analysis of the sole effects of changes in temperature and changes in precipitation showed that, for SOC, the temperature effect predominates over the precipitation effect, whereas for DOC the precipitation effect is more prominent. A reduction in the application rates of fertilisers under the land management scenario leads to a decrease in the SOC stocks and the DOC leaching rates for the arable land systems, but it has a negligible effect on SOC and DOC levels for the grassland systems. Our study demonstrated the ability of the Century model to simulate climate change and agricultural management effects on SOC dynamics and DOC leaching, providing a robust tool for the assessment of carbon sequestration and the implications for contaminant transport in soils.


2016 ◽  
Vol 9 (9) ◽  
pp. 2973-2998 ◽  
Author(s):  
David M. Lawrence ◽  
George C. Hurtt ◽  
Almut Arneth ◽  
Victor Brovkin ◽  
Kate V. Calvin ◽  
...  

Abstract. Human land-use activities have resulted in large changes to the Earth's surface, with resulting implications for climate. In the future, land-use activities are likely to expand and intensify further to meet growing demands for food, fiber, and energy. The Land Use Model Intercomparison Project (LUMIP) aims to further advance understanding of the impacts of land-use and land-cover change (LULCC) on climate, specifically addressing the following questions. (1) What are the effects of LULCC on climate and biogeochemical cycling (past–future)? (2) What are the impacts of land management on surface fluxes of carbon, water, and energy, and are there regional land-management strategies with the promise to help mitigate climate change? In addressing these questions, LUMIP will also address a range of more detailed science questions to get at process-level attribution, uncertainty, data requirements, and other related issues in more depth and sophistication than possible in a multi-model context to date. There will be particular focus on the separation and quantification of the effects on climate from LULCC relative to all forcings, separation of biogeochemical from biogeophysical effects of land use, the unique impacts of land-cover change vs. land-management change, modulation of land-use impact on climate by land–atmosphere coupling strength, and the extent to which impacts of enhanced CO2 concentrations on plant photosynthesis are modulated by past and future land use.LUMIP involves three major sets of science activities: (1) development of an updated and expanded historical and future land-use data set, (2) an experimental protocol for specific LUMIP experiments for CMIP6, and (3) definition of metrics and diagnostic protocols that quantify model performance, and related sensitivities, with respect to LULCC. In this paper, we describe LUMIP activity (2), i.e., the LUMIP simulations that will formally be part of CMIP6. These experiments are explicitly designed to be complementary to simulations requested in the CMIP6 DECK and historical simulations and other CMIP6 MIPs including ScenarioMIP, C4MIP, LS3MIP, and DAMIP. LUMIP includes a two-phase experimental design. Phase one features idealized coupled and land-only model simulations designed to advance process-level understanding of LULCC impacts on climate, as well as to quantify model sensitivity to potential land-cover and land-use change. Phase two experiments focus on quantification of the historic impact of land use and the potential for future land management decisions to aid in mitigation of climate change. This paper documents these simulations in detail, explains their rationale, outlines plans for analysis, and describes a new subgrid land-use tile data request for selected variables (reporting model output data separately for primary and secondary land, crops, pasture, and urban land-use types). It is essential that modeling groups participating in LUMIP adhere to the experimental design as closely as possible and clearly report how the model experiments were executed.


2021 ◽  
Author(s):  
Damien Beillouin ◽  
Rémi Cardinael ◽  
David Berre ◽  
Annie Boyer ◽  
Marc Corbeels ◽  
...  

2020 ◽  
Vol 31 (5) ◽  
pp. 198-200
Author(s):  
Robin Blake

The concept of sustainable agriculture involves meeting society?s current food and material needs without compromising the ability of future generations to do the same, and is a core theme of the green deal. Sustainability is closely linked to resilience, i.e. the capacity of food systems over time to provide sufficient, adequate, and accessible food to all, in the face of various and even unforeseen challenges. Food systems cannot expect to be resilient to challenges such as climate change and COVID-19 if they are not sustainable. Historically, solutions to produce more food sustainably focussed on bringing more land into agriculture, exploiting new or underutilised resources, and adopting new technologies. However, it is now recognised that we need to do more with less, and use what we have wisely and with the best scientific and ecological investments, especially in Europe. Pressures on land use from a growing population to build houses, transport, and infrastructure, as well as protecting habitats for recreation and biodiversity, mean that simply finding more agricultural land is not an option.


2020 ◽  
Author(s):  
Oksana Rybchak ◽  
Kanisios Mukwashi ◽  
Justin Du Toit ◽  
Gregor Feig ◽  
Mari Bieri ◽  
...  

<p>South African ecosystems are highly vulnerable to the effects of climate change, such as increasing temperatures, modifications in rainfall patterns, increasing frequency of extreme weather events and fire, and increased concentration of atmospheric carbon dioxide (CO<sub>2</sub>). At the same time, ecosystems are impacted by livestock grazing, cultivation, fuelwood collection, urbanization and other types of human land use. Climatic and land management factors, such as water availability and grazing intensity, play a dominant role in influencing primary production and carbon fluxes. However, the relative role of those parameters still remains less known in many South African ecosystems. Investigation of the carbon inter-annual variability at dwarf shrub Karoo sites will assist in understanding savanna dynamics and in constraining climate change scenarios as basis for climate adaptation strategies. </p><p>This research is part of the EMSAfrica (Ecosystem Management Support for Climate Change in Southern Africa) project, which aims at producing data and information relevant to land users and land managers such as South African National Parks (SANParks). A particular focus is given on the importance of carbon cycling in degraded vs. intact systems. We investigate the impacts of climate parameters and diverse land management on ecosystem-atmosphere variability of carbon fluxes, latent and sensible energy. Long-term measurements were collected and analyzed from two eddy-covariance towers in the Karoo, Eastern Cape, South Africa. Study areas had almost identical climatic conditions but differ in the intensity of livestock grazing. The first site represents controlled grazing and comprises a diverse balance of dwarf shrubs and grasses, while the second site is degraded through overgrazing in the past (rested for approximately 8 years) and mainly consists of unpalatable grasses and short-lived species. These ecosystems are generally characterized by alternating wet (December to May) and dry seasons (June to November) with the amount and distribution of rain (average 373 mm per year) and soil moisture as the main drivers of carbon fluxes. We observed peak CO<sub>2</sub> uptake occurring during the wet season (January to April) and a progressive decrease from wet to dry periods being highly controlled by the amount of precipitation. At the end of the observation period (November 2015 – November 2019), we found that both study sites were considerable carbon sources, but during wet periods 'overgrazed in the past' site had stronger carbon sequestration compared to 'controlled grazing' site. The higher carbon uptake could be an indication that resting of the highly degraded site for a long period may improve carbon uptake in the Karoo ecosystems. Our study shows that CO<sub>2</sub> dynamics in the Karoo are largely driven by water availability and the effects of grazing intensity on above-ground biomass.</p>


Sign in / Sign up

Export Citation Format

Share Document