scholarly journals Влияние температуры отжига на электрически активные центры в кремнии, имплантированном ионами германия

Author(s):  
Н.А. Соболев ◽  
О.В. Александров ◽  
В.И. Сахаров ◽  
И.Т. Серенков ◽  
Е.И. Шек ◽  
...  

AbstractThe implantation of Czochralski-grown p -type silicon with 1-MeV germanium ions at a dose of 2 . 5 × 10^14 cm^–2 does not lead to the amorphization of single-crystal silicon. Under subsequent high-temperature annealing, electrically active acceptor centers are transformed. Their concentration and special distribution depend on the annealing temperature. The possible factors determining how these centers are formed are discussed.

2001 ◽  
Vol 687 ◽  
Author(s):  
H.-S. Moon ◽  
L. Anand ◽  
S. M. Spearing

AbstractSilicon in single crystal form has been the material of choice for the first demonstration of the MIT microengine project. However, because it has a relatively low melting temperature, silicon is not an ideal material for the intended operational environment of high temperature and stress. In addition, preliminary work indicates that single crystal silicon has a tendency to undergo localized deformation by slip band formation. Thus it is critical to obtain a better understanding of the mechanical behavior of this material at elevated temperatures in order to properly exploit its capabilities as a structural material. Creep tests in simple compression with n-type single crystal silicon, with low initial dislocation density, were conducted over a temperature range of 900 K to 1200 K and a stress range of 10 MPa to 120 MPa. The compression specimens were machined such that the multi-slip <100> or <111> orientations were coincident with the compression axis. The creep tests reveal that response can be delineated into two broad regimes: (a) in the first regime rapid dislocation multiplication is responsible for accelerating creep rates, and (b) in the second regime an increasing resistance to dislocation motion is responsible for the decelerating creep rates, as is typically observed for creep in metals. An isotropic elasto-viscoplastic constitutive model that accounts for these two mechanisms has been developed in support of the design of the high temperature turbine structure of the MIT microengine.


1992 ◽  
Vol 276 ◽  
Author(s):  
Mitsuteru Kimura ◽  
Kazuhiro Komatsuzaki

ABSTRACTMicroheater made of heavily Boron doped single crystal Si beam covered with SiO2 film, 1000×300×3 μm, is fabricated on the n type Si substrate by the anisotropic etching technique. As this microheater has an air bridge structure of low resistivity semiconductor material with positive but small temperature coefficient of resistance, a broad heating area up to 800 °C is easily obtained and it has quick response with the thermal time constant t of about 4 ms and has small power consumption. Since this heating area is made of p type layer in the n type substrate,this area can be electrically isolated from the substrate because of the formation of p-n junction.


1987 ◽  
Vol 65 (8) ◽  
pp. 892-896 ◽  
Author(s):  
R. E. Thomas ◽  
C. E. Norman ◽  
S. Varma ◽  
G. Schwartz ◽  
E. M. Absi

A low-cost, high-yield technology for producing single-crystal silicon solar cells at high volumes, and suitable for export to developing countries, is described. The process begins with 100 mm diameter as-sawn single-crystal p-type wafers with one primary flat. Processing steps include etching and surface texturization, gaseous-source diffusion, plasma etching, and contacting via screen printing. The necessary adaptations of such standard processes as diffusion and plasma etching to solar-cell production are detailed. New process developments include a high-throughput surface-texturization technique, and automatic printing and firing of cell contacts.The technology, coupled with automated equipment developed specifically for the purpose, results in solar cells with an average efficiency greater than 12%, a yield exceeding 95%, a tight statistical spread on parameters, and a wide tolerance to starting substrates (including the first 100 mm diameter wafers made in Canada). It is shown that with minor modifications, the present single shift 500 kWp (kilowatt peak) per year capacity technology can be readily expanded to 1 MWp per year, adapted to square and polycrystalline substrates, and efficiencies increased above 13%.


1990 ◽  
Vol 182 ◽  
Author(s):  
B. Raicu ◽  
M.I. Current ◽  
W.A. Keenan ◽  
D. Mordo ◽  
R. Brennan ◽  
...  

AbstractHighly conductive p+-polysilicon films were fabricated over Si(100) and SiO2 surfaces using high-dose ion implantation and rapid thermal annealing. Resistivities close to that of single crystal silicon were achieved. These films were characterized by a variety of electrical and optical techniques as well as SIMS and cross-section TEM.


Sign in / Sign up

Export Citation Format

Share Document