Te Induced AlAs/GaAs Superlattice Mixing

1988 ◽  
Vol 126 ◽  
Author(s):  
P. Mel ◽  
S. A. Schwarz ◽  
T. Venkatesan ◽  
C. L. Schwartz ◽  
E. Colas

ABSTRACTTe enhanced mixing of AlAs/GaAs superlattice has been observed by secondary ion mass spectrometry. The superlattice sample was grown by organometallic chemical vapor deposition and doped with Te at concentrations of 2×1017 to 5×1018 cm−.3 In the temperature range from 700 to 1000 C, a single activation energy for the Al diffusion of 2.9 eV was observed. Furthermore, it has been found that the relationship between the Al diffusion coefficient and Te concentration is linear. Comparisons have been made between Si and Te induced superlattice mixing.

2006 ◽  
Vol 527-529 ◽  
pp. 625-628
Author(s):  
Hun Jae Chung ◽  
Sung Wook Huh ◽  
A.Y. Polyakov ◽  
Saurav Nigam ◽  
Qiang Li ◽  
...  

Undoped 6H- and 4H-SiC crystals were grown by Halide Chemical Vapor Deposition (HCVD). Concentrations of impurities were measured by various methods including secondary-ion-mass spectrometry (SIMS). With increasing C/Si ratio, nitrogen concentration decreased and boron concentration increased as expected for the site-competition effect. Hall-effect measurements on 6H-SiC crystals showed that with the increase of C/Si ratio from 0.06 to 0.7, the Fermi level was shifted from Ec-0.14 eV (nitrogen donors) to Ev+0.6 eV (B-related deep centers). Crystals grown with C/Si > 0.36 showed high resistivities between 1053 and 1010 4cm at room temperature. The high resistivities are attributed to close values of the nitrogen and boron concentrations and compensation by deep defects present in low densities.


2014 ◽  
Vol 806 ◽  
pp. 45-50 ◽  
Author(s):  
Roxana Arvinte ◽  
Marcin Zielinski ◽  
Thierry Chassagne ◽  
Marc Portail ◽  
Adrien Michon ◽  
...  

In the present contribution, the trends in voluntary incorporation of aluminum in 4H-SiC homoepitaxial films are investigated. The films were grown on Si-and C-face 4H-SiC 8°off substrates by chemical vapor deposition (CVD) in a horizontal, hot wall CVD reactor. Secondary Ion Mass Spectrometry (SIMS) and capacitance-voltage (C-V) measurements were used to determine the Al incorporation in the samples. The influence of Trimethylaluminum (TMA) flow rate, growth temperature, growth pressure and C/Si ratio on the dopant incorporation was studied.


1996 ◽  
Vol 423 ◽  
Author(s):  
M. K. Linnarsson ◽  
J. P. Doyle ◽  
B. G. Svensson

Abstract6H polytype silicon carbide (SiC) samples of n-type have been implanted with 50 keV H+ ions and subsequently annealed at temperatures between 200 °C and 1150 °C. Using depth profiling by secondary ion mass spectrometry motion of hydrogen is observed in the implanted region for temperatures above 700 °C. A diffusion coefficient of ∼10−14 cm2/s is extracted at 800°C with an approximate activation energy of ∼3.5 eV. Hydrogen displays strong interaction with the implantation-induced defects and stable hydrogen-defect complexes are formed. These complexes anneal out at temperatures in excess of 900°C and are tentatively identified as Carbon-Hydrogen centers at a Si vacancy.


2001 ◽  
Vol 664 ◽  
Author(s):  
Maribeth Swiatek ◽  
Jason K. Holt ◽  
Harry A. Atwater

ABSTRACTWe apply a rate-equation pair binding model of nucleation kinetics [1] to the nucleation of Si islands grown by hot-wire chemical vapor deposition on SiO2 substrates. Previously, we had demonstrated an increase in grain size of polycrystalline Si films with H2 dilution from 40 nm using 100 mTorr of 1% SiH4 in He to 85 nm with the addition of 20 mTorr H2. [2] This increase in grain size is attributed to atomic H etching of Si monomers rather than stable Si clusters during the early stages of nucleation, decreasing the nucleation density. Atomic force microscopy (AFM) measurements show that the nucleation density increases sublinearly with time at low coverage, implying a fast nucleation rate until a critical density is reached, after which grain growth begins. The nucleation density decreases with increasing H2 dilution (H2:SiH4), which is an effect of the etching mechanism, and with increasing temperature, due to enhanced Si monomer diffusivity on SiO2. From temperature-dependent measurements, we estimate the activation energy for surface diffusion of Si monomers on SiO2 to be 0.47 ± 0.09 eV. Simulations of the temperature-dependent supercritical cluster density lead to an estimated activation energy of 0.42 eV ± 0.01 eV and a surface diffusion coefficient prefactor of 0.1 ± 0.03 cm2/s. H2-dilution-dependent simulations of the supercritical cluster density show an approximately linear relationship between the H2 dilution and the etch rate of clusters.


1996 ◽  
Vol 423 ◽  
Author(s):  
S. Mirzakuchaki ◽  
H. Golestanian ◽  
E. J. Charlson ◽  
T. Stacy

AbstractAlthough many researchers have studied boron-doped diamond thin films in the past several years, there have been few reports on the effects of doping CVD-grown diamond films with phosphorous. For this work, polycrystalline diamond thin films were grown by hot filament chemical vapor deposition (HFCVD) on p-type silicon substrates. Phosphorous was introduced into the reaction chamber as an in situ dopant during the growth. The quality and orientation of the diamond thin films were monitored by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Current-voltage (I-V) data as a function of temperature for golddiamond film-silicon-aluminum structures were measured. The activation energy of the phosphorous dopants was calculated to be approximately 0.29 eV.


Sign in / Sign up

Export Citation Format

Share Document