scholarly journals Assessing Reverse Osmosis for Water Recycling in Alcoholic Fermentation Processes

Author(s):  
Marjorie Gavach ◽  
Camille Sagne ◽  
Claire Fargues ◽  
Marielle Bouix ◽  
Martine Decloux ◽  
...  

Recycling the stillage condensates to dilute worts in the fermentation stage would be an effective way to decrease wastewater production and ground water consumption. However, condensates contain fermentation inhibiting solutes, such as volatile acids, alcohols and aromatic compounds that should be removed. Reverse osmosis was investigated as a clean process for such a purpose. Pilot scale experiments were carried out with industrial condensates and using Hydranautics ESPA2 membrane. The influence of transmembrane pressure (TMP), volume reduction factor (VRF) and pH on permeate flow rate and rejection rates of inhibitory compounds were investigated. The optimal operating conditions were TMP=10 bar to get the maximal admissible permeate flow, a low VRF to produce the less concentrated permeate and a pH ? 6 to obtain the highest rejection rates of the acids. Results were confirmed by trials at pre-industrial scale in a distillery. However, the permeate produced at pH 6 proved to be less fermentable than the permeate produced at natural pH because of an increase in the osmotic pressure. Natural pH permeate displayed a fermentation activity almost equivalent to tap water chosen as the blank. The remaining inhibitory acids did not seem to significantly hinder yeast growth nor yeast physiology.

2014 ◽  
Vol 68 (5) ◽  
Author(s):  
Azry Borhan ◽  
Muhammad Muhibbudin Mat Johari

Monoethanolamine (MEA) has been vastly used for the removal of carbon dioxide (CO2) in natural gas processing plant. However, during the absorption-desorption process and maintenance activities, a small amount of amine get carries over and discharged into the effluent wastewater stream. Due to its high Chemical Oxygen Demand (COD) and require large volume of water for dilution, therefore treatment of MEA contaminated wastewater is a major concern in most amine sweetening plants. In this research, MEA wastewater generated from PETRONAS Fertilizer Kedah Sdn. Bhd (PFK) was treated via AFC99 tubular thin film composite polyamide Reverse Osmosis (RO) membrane. The effect of operating parameter (transmembrane pressure (TMP), feed concentration and pH) towards permeate flux and MEA rejection were studied to obtain the optimum operating conditions. Experimental results showed that AFC99 membrane is able to reject MEA up to 98% when operated at TMP of 20 bars, feed concentration of 300 ppm and pH of 4. This work shows that the RO membrane was feasible and desirable to be used for removal of MEA contaminants from wastewater. Besides, the treated water fulfills the watering standards.


Membranes ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 261
Author(s):  
Noe Luiz-Santos ◽  
Rogelio Prado-Ramírez ◽  
Enrique Arriola-Guevara ◽  
Rosa-María Camacho-Ruiz ◽  
Lorena Moreno-Vilet

Ceramic and polymeric membrane systems were compared at the pilot scale for separating agave fructans into different molecular weight fractions that help to diversify them into more specific industrial applications. The effect of the transmembrane pressure of ultrafiltration performance was evaluated through hydraulic permeability, permeate flux and rejection coefficients, using the same operating conditions such as temperature, feed concentration and the molecular weight cut-off (MWCO) of membranes. The fouling phenomenon and the global yield of the process were evaluated in concentration mode. A size distribution analysis of agave fructans is presented and grouped by molecular weight in different fractions. Great differences were found between both systems, since rejection coefficients of 68.6% and 100% for fructans with degrees of polymerization (DP) > 10, 36.3% and 99.3% for fructooligosaccharides (FOS) and 21.4% and 34.2% for mono-disaccharides were obtained for ceramic and polymeric membrane systems, respectively. Thus, ceramic membranes are better for use in the fractionation process since they reached a purity of 42.2% of FOS with a yield of 40.1% in the permeate and 78.23% for fructans with DP > 10 and a yield of 70% in the retentate. Polymeric membranes make for an efficient fructan purification process, eliminating only mono-disaccharides, and reaching a 97.7% purity (considering both fructan fractions) with a yield of 64.3% in the retentate.


2016 ◽  
Vol 18 (2) ◽  
pp. 291-308 ◽  

<div> <p>10 mg l<sup>-1</sup> and the permeate flux behavior during dead-end stirred-cell filtration system using six type of commercially available loose and tight NF membranes (NP010, NP030, NF90, NF270, CK3001 and DS-5DK). The rejection of CIPRO and permeate flux value were evaluated according to the effects of different parameters such as volume reduction factor (VRF), membrane type, transmembrane pressure (TMP) and pH. Contact angle and SEM measurements were also performed for the analysis of the pollution occurring in the pores and on the surfaces of the membranes. Filtration experiments for all membranes used indicated that the flux reached the steady state at VRF 3. CIPRO rejection was found to vary especially with both pH and membrane tightness. Despite the fact that, the loose NF membranes showed poor and variable CIPRO removal, the highest rejection was obtained with NF90 tight membrane at the original pH value (pH 5.65) and 10 bar of applied pressure. NF90 membrane achieved 98.3% TOC, 98.9% COD, 96.9% TDS and 95.7% <em>E</em><sub>c </sub>rejections at 24.39 L m<sup>-2</sup> h<sup>-1</sup> permeate flux at the predefined operating conditions.&nbsp;</p> </div> <p>&nbsp;</p>


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Hanaa M. Ali ◽  
Hanaa Gadallah ◽  
Sahar S. Ali ◽  
Rania Sabry ◽  
A. G. Gadallah

This paper was focused on the investigation of a forward osmosis- (FO-) reverse osmosis (RO) hybrid process to cotreat seawater and impaired water from steel industry. By using this hybrid process, seawater can be diluted before desalination, hence reducing the energy cost of desalination, and simultaneously contaminants present in the impaired water are prevented from migrating into the product water through the FO and RO membranes. The main objective of this work was to investigate on pilot-scale system the performance of the combined FO pretreatment and RO desalination hybrid system and specifically its effects on membrane fouling and overall solute rejection. Firstly, optimization of the pilot-scale FO process to obtain the most suitable and stable operating conditions for practical application was investigated. Secondly, pilot-scale RO process performance as a posttreatment to FO process was evaluated in terms of water flux and rejection. The results indicated that the salinity of seawater reduced from 35000 to 13000 mg/L after 3 hrs using FO system, while after 6 hrs it approached 10000 mg/L. Finally, FO/RO system was tested on continuous operation for 15 hrs and it was demonstrated that no pollutant was detected neither in draw solution nor in RO permeate after the end of operating time.


Membranes ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 92
Author(s):  
Fitim Destani ◽  
Attilio Naccarato ◽  
Antonio Tagarelli ◽  
Alfredo Cassano

The aim of this work was to analyze the potential of reverse osmosis (RO) membranes in the recovery and concentration of aroma compounds from orange juice evaporator condensate (EC) streams. Concentration experiments were performed by using three RO spiral-wound aromatic polyamide membranes (SG1812C-34D, SC1812C-34D and SE1812) with different NaCl rejections. The effect of transmembrane pressure, axial feed flowrate and volume concentration ratio (VCR) on permeate flux was studied. Rejections of the investigated membranes towards specific aroma compounds (octanol, α-terpineol, terpinen-4-ol, cis-carveol, karvon, linalool) in selected operating conditions were also evaluated. The concentrations of the aroma compounds were determined by gas chromatography coupled with mass spectrometry (GC-MS) using headspace solid-phase microextraction (HS-SPME) as a sample preparation approach. For all selected membranes, the permeate flux increased linearly by increasing the operating pressure from 5 to 25 bar; on the other hand, the feed flowrate did not have any significant effect on the permeate flux. High retention values towards aroma compounds (>80%) were measured for all selected membranes. However, the SC membrane showed the highest rejection values (>96%) and the best correlation between concentration factor of aroma compounds and VCR.


Molecules ◽  
2019 ◽  
Vol 24 (12) ◽  
pp. 2279 ◽  
Author(s):  
Carmela Conidi ◽  
Lidia Fucà ◽  
Enrico Drioli ◽  
Alfredo Cassano

In this work, the use of polymeric ultrafiltration and nanofiltration membranes was investigated in order to recover glycyrrhizin and phenolic compounds from licorice wastewaters. Filtration experiments were performed on a laboratory scale using four polyamide thin-film composite membranes (GK, GH, GE, and DK, from GE Osmonics) with different molecular weight cut-offs (from 150 to 3500 Da). The permeate flux and retention values of glycyrrhizin, the total polyphenols, the caffeic acid, the total carbohydrate, and the total antioxidant activity as a function of the transmembrane pressure (TMP) and weight reduction factor (WRF) were evaluated. In selected operating conditions, the membrane productivity decreased in the order of GK > DK > GH > GE, with a similar trend to that of water permeability. Glycyrrhizin was totally rejected by selected membranes, independently of TMP and WRF. For the other antioxidant compounds, the retention values increased by increasing both of the parameters. According to the experimental results, a combination of membranes in a sequential design was proposed as a viable approach to produce concentrated fractions enriched in bioactive compounds and purified water from licorice wastewater.


2005 ◽  
Vol 70 (1) ◽  
pp. 107-114 ◽  
Author(s):  
S.S. Madaeni ◽  
H. Daneshvar

Membrane technologies in general and reverse osmosis in particular have been employed for the concentrating of solutions. In this study, the concentrating of a heat sensitive alizarin extracted from madder root was realized using an FT30 reverse osmosis membrane. The effects of cross flow velocity, transmembrane pressure and pH on the flux and rejection were studied. Increasing the transmembrane pressure increased the flux while the rejection was constant. At pH 7-8, the highest flux was achieved. This study showed that reverse osmosis is the process of choice for the concentrating of alizarin solutions. The optimum operating conditions were 1.0 m/s cross flow velocity, 16 bars transmembrane pressure and pH 7. The system was tested for 12 h without severe fouling problems.


OENO One ◽  
2019 ◽  
Vol 53 (1) ◽  
pp. 11-26 ◽  
Author(s):  
Sami Yammine ◽  
Robin Rabagliato ◽  
Xavier Vitrac ◽  
Martine Mietton Peuchot ◽  
Rémy Ghidossi

Filtration experiments in batch concentration mode (with recycling of the retentate stream) of grape pomace extract were performed in laboratory filtration membrane equipment by using nine commercial nanofiltration (NF) membranes with an approximate molecular weight cut-off (MWCO) of 1000‒150 Da. The filtration experiments of the selected pomace extract were performed by modifying the most important operating variables: transmembrane pressure, tangential velocity, temperature, and the nature and MWCO of the membranes. The evolution of the cumulative permeate volumes and permeate fluxes with processing time was analyzed till a volume reduction factor (VRF) of 10 was reached. The effect of the mentioned operating conditions was discussed. The effectiveness of the filtration treatments was determined by the evaluation of the rejection coefficients for several families of polyphenols. Membranes possessing MWCO between 1000 and 500 Da were able to quantitatively recover polymeric proanthocyanidins in the concentrate stream and separate them from phenols that passed through the membrane into the permeate stream. On the other hand, the 600 to 300 Da membranes could also be used for the fractionation of monomeric phenolic families. The membranes were able to partially remove the anthocyanin fragments of phenolic acid derivatives and flavonols in the concentrate stream and at the same time.


TAPPI Journal ◽  
2009 ◽  
Vol 8 (3) ◽  
pp. 14-20 ◽  
Author(s):  
YUAN-SHING PERNG ◽  
EUGENE I-CHEN WANG ◽  
SHIH-TSUNG YU ◽  
AN-YI CHANG

Trends toward closure of white water recirculation loops in papermaking often lead to a need for system modifications. We conducted a pilot-scale study using pulsed electrocoagulation technology to treat the effluent of an old corrugated containerboard (OCC)-based paper mill in order to evaluate its treatment performance. The operating variables were a current density of 0–240 A/m2, a hydraulic retention time (HRT) of 8–16 min, and a coagulant (anionic polyacrylamide) dosage of 0–22 mg/L. Water quality indicators investigated were electrical con-ductivity, suspended solids (SS), chemical oxygen demand (COD), and true color. The results were encouraging. Under the operating conditions without coagulant addition, the highest removals for conductivity, SS, COD, and true color were 39.8%, 85.7%, 70.5%, and 97.1%, respectively (with an HRT of 16 min). The use of a coagulant enhanced the removal of both conductivity and COD. With an optimal dosage of 20 mg/L and a shortened HRT of 10 min, the highest removal achieved for the four water quality indicators were 37.7%, 88.7%, 74.2%, and 91.7%, respectively. The water qualities thus attained should be adequate to allow reuse of a substantial portion of the treated effluent as process water makeup in papermaking.


2019 ◽  
Author(s):  
Chem Int

The objective of this work is to study the ageing state of a used reverse osmosis (RO) membrane taken in Algeria from the Benisaf Water Company seawater desalination unit. The study consists of an autopsy procedure used to perform a chain of analyses on a membrane sheet. Wear of the membrane is characterized by a degradation of its performance due to a significant increase in hydraulic permeability (25%) and pressure drop as well as a decrease in salt retention (10% to 30%). In most cases the effects of ageing are little or poorly known at the local level and global measurements such as (flux, transmembrane pressure, permeate flow, retention rate, etc.) do not allow characterization. Therefore, a used RO (reverse osmosis) membrane was selected at the site to perform the membrane autopsy tests. These tests make it possible to analyze and identify the cause as well as to understand the links between performance degradation observed at the macroscopic scale and at the scale at which ageing takes place. External and internal visual observations allow seeing the state of degradation. Microscopic analysis of the used membranes surface shows the importance of fouling. In addition, quantification and identification analyses determine a high fouling rate in the used membrane whose foulants is of inorganic and organic nature. Moreover, the analyses proved the presence of a biofilm composed of protein.


Sign in / Sign up

Export Citation Format

Share Document