scholarly journals Model Matematis Hubungan antara Kadar Air Akhir Bahan dengan Variabel Proses Pengeringan pada Pneumatic Conveying Recirculated Dryer

2018 ◽  
Vol 38 (2) ◽  
pp. 217
Author(s):  
Abadi Jading ◽  
Nursigit Bintoro ◽  
Lilik Sutiarso ◽  
Joko Nugroho Wahyu Karyadi

Flour drying could be conducted by using pneumatic conveying dryer (PCD) or flash dryer, but generally it is required a high vertical pipe. The high of vertical pipe may be replaced with a recirculation process to produce a required final moisture content of the material. This study had designed pneumatic conveying recirculated dryer (PCRD) to dryi of wet sago starch. Later, the design was used to determine a mathematical model of the relationship between the variables of drying process with final moisture content of the material. The purpose of this study was to develop a mathematical model of the relationship between the final moisture content of wet sago starch  with variables drying process and recirculation continuously in the pneumatic conveying recirculated dryer (PCRD) using dimensional analysis. Buckingham Phi Theorem methods of dimensional analysis was used to find the relationship variables that affect the final moisture content of wet sago starch on the PCRD machine. The mathematical model generated in this study is      The coefficient of determination (R2) of the mathematical model was 0.948, or 94.8 %, indicated that the model was valid to predict the final moisture content of wet sago starch in designing PCRD machines. While the sensitivity of the test results showed that the dimensionless product of the most influential are , , and . The model was applicable for drying wet sago starch or other starch material which is similat to the physical properties of wet sago starch. ABSTRAKPengeringan bahan-bahan tepung dapat dilakukan dengan pneumatic conveying dryer (PCD) atau flash dryer, namun umumnya memerlukan pipa vertikal yang cukup tinggi. Pipa vertikal yang tinggi dapat diganti dengan proses resirkulasi untuk menghasilkan kadar air akhir bahan yang disyaratkan. Pada penelitian ini telah dirancang pneumatic conveying recirculated dryer (PCRD) untuk mengeringkan pati sagu basah, serta dicari model hubungan matematis antara variabel-variabel proses pengeringan dengan kadar air akhir. Tujuan penelitian ini adalah mengembangkan model matematis hubungan antara kadar air akhir pati sagu basah dengan variabel-variabel proses pengeringan resirkulasi secara kontinyu pada pneumatic conveying recirculated dryer (PCRD) menggunakan analisis dimensi. Metode Buckingham Phi Theorem dalam analisis dimensi digunakan untuk mencari hubungan variabel-variabel yang berpengaruh terhadap kadar air akhir pati sagu basah pada mesin PCRD. Model matematis yang dihasilkan pada penelitian ini adalah      Nilai koefisien determinasi (R2) dari model matematis tersebut adalah 0,948 atau 94,8 %, menunjukkan bahwa model tersebut valid digunakan untuk memprediksi kadar air akhir pati sagu basah dalam merancang mesin PCRD. Sedangkan hasil uji sensitivitas menunjukkan bahwa dimensionless product yang paling berpengaruh adalah , , dan . Model tersebut berlaku untuk pengeringan pati sagu basah atau bahan-bahan tepung lainnya yang sifat fisiknya identik dengan pati sagu basah.

2013 ◽  
Vol 401-403 ◽  
pp. 1129-1134
Author(s):  
Qiang Liao ◽  
Wei Dong Fan ◽  
Jiang Wu ◽  
Tao Xu

In order to detect lubricating oil moisture content quickly, and replace lubricating oil of equipment in time , impedance type moisture content of lubricating oil detecting system based on AD5933 and cylindrical coaxial capacitive sensor are explored. The paper selected the excitation voltage amplitude and frequency reasonably, and studied the relationship between water content of lubricating oil and impedance value. The result suggests that when the excitation voltage amplitude is 2V, the frequency ranges from 4 kHz to 6 kHz, moisture content of lubricating oil is closely related to impedance value and lubricating oil resistance value decreases with the increase of its moisture content. In addition, the mathematical model between moisture content of lubricating oil and the impedance value is established, moisture content of lubricating oil can be calculated according to the impedance value.


2016 ◽  
Vol 36 (01) ◽  
pp. 111 ◽  
Author(s):  
Yus Witdarko ◽  
Nursigit Bintoro ◽  
Bandul Suratmo ◽  
Budi Rahadjo

Moisture content of the materials (Ka) is the most important variable in evaluating the performance of drying process, therefore the ability to predict moisture-content of the materials in the drying process is very important. The objective of this research was to formulate a mathematical relationship between various pneumatic drying process variables and the moisturecontent of the materials of cassava flour by applying dimensional analysis. In this research, a pneumatic drying equipment and test edit in wide varieties of treatments, such as the input capacity, drying air temperature, and drying air velocity. Based on the result of data analysis, it was obtained that the relationship between moisture content of the materials and the drying process variables could be expressed as followThis equation had 0,722 coefficient of determination, so that it could be used to predict the moisture content of cassava flour precisely. Sensitivity analysis indicated that the dimensionless product which had the largest effect on Ka was.Keywords: Cassava flour, pneumatic drying, dimensional analysis, moisture content ABSTRAKKadar air bahan (Ka) merupakan variabel yang paling penting dalam mengevaluasi kinerja proses pengeringan bahan, sehingga kemampuan untuk memprediksi Ka dalam proses pengeringan akan menjadi sangat penting. Penelitian ini bertujuan untuk memformulasikan hubungan matematis antara berbagai variabel proses pengeringan secara pneumatik dengan Ka akhir tepung ketela pohon dengan menerapkan analisis dimensi. Pada penelitian ini telah dirancang peralatan pneumatic drying dan dilakukan pengujian dengan berbagai macam variasi perlakuan seperti kapasitas input, temperatur udara pengering, dan kecepatan udara pengering. Berdasarkan hasil analisis data maka diperoleh hubungan antara Ka dengan variabel-variabel proses pengeringan sebagai berikut:Persamaan tersebut mempunyai nilai koefisien determinasi 0,722 sehingga besar kemungkinan untuk dapat digunakansebagai alternatif dalam memprediksi kadar air tepung hasil pengeringan. Hasil uji sensitivitas menunjukkan bahwadimensionless product yang paling berpengaruh terhadap nilai Ka adalah    ்ೠ   .Kata kunci: Tepung kasava, pneumatic drying, analisis dimensi, kadar air


2001 ◽  
Vol 6 (1) ◽  
pp. 9-19 ◽  
Author(s):  
A. Buikis ◽  
J. Cepitis ◽  
H. Kalis ◽  
A. Reinfelds ◽  
A. Ancitis ◽  
...  

The mathematical model of wood drying based on detailed transport phenomena considering both heat and moisture transfer have been offered in article. The adjustment of this model to the drying process of papermaking is carried out for the range of moisture content corresponding to the period of drying in which vapour movement and bound water diffusion in the web are possible. By averaging as the desired models are obtained sequence of the initial value problems for systems of two nonlinear first order ordinary differential equations. 


1991 ◽  
Vol 24 (5) ◽  
pp. 85-96 ◽  
Author(s):  
Qingliang Zhao ◽  
Zijie Zhang

By means of simulated tests of a laboratory–scale oxidation pond model, the relationship between BOD5 and temperature fluctuation was researched. Mathematical modelling for the pond's performance and K1determination were systematically described. The calculation of T–K1–CeCe/Ci) was complex but the problem was solved by utilizing computer technique in the paper, and the mathematical model which could best simulate experiment data was developed. On the basis of experiment results,the concept of plug–ratio–coefficient is also presented. Finally the optimum model recommended here was verified with the field–scale pond data.


1999 ◽  
Author(s):  
Mahmut D. Mat ◽  
Yüksel Kaplan ◽  
Olusegun J. Ilegbusi

Abstract Subcooled boiling of water in a vertical pipe is numerically investigated. The mathematical model involves solution of transport equations for vapor and liquid phase separately. Turbulence model considers the turbulence production and dissipation by the motion of the bubbles. The radial and axial void fractions, temperature and velocity profiles in the pipe are calculated. The estimated results are compared to experimental data available in the literature. It is found that while present study satisfactorily agrees with experimental data in the literature, it improves the prediction at lower void fractions.


1976 ◽  
Vol 39 (4) ◽  
pp. 244-245 ◽  
Author(s):  
G. BEETNER ◽  
T. TSAO ◽  
A. FREY ◽  
K. LORENZ

Triticale kernels were extruded using a Brabender Plasticorder extruder with ¾-inch rifled barrel and 1:1 flight depth ratio screw. Whole grain samples were extruded at initial moisture contents of 15, 20, and 25%. Debranned samples were extruded at an initial moisture content of 22%. Barrel temperatures of 350, 400, and 450 F and nozzle openings of 1/8 inch and 1/16 inch were used. The products were analyzed for thiamine and riboflavin content. Results were corrected for final moisture content and expressed as fraction retained. A multiple regression was done to determine the relationship between independent and derived variables, and the retention. Riboflavin retention was correlated simply as a function of barrel temperature. Thiamine retention of the debranned material was correlated as a function of nozzle size and barrel temperature. Thiamine retention of the whole grain samples was correlated for nozzle size, first and second order temperature effects, and confounding between nozzle size and temperature.


2017 ◽  
Vol 7 (1) ◽  
pp. 137-150
Author(s):  
Агапов ◽  
Aleksandr Agapov

For the first time the mathematical model of task optimization for this scheme of cutting logs, including the objective function and six equations of connection. The article discusses Pythagorean area of the logs. Therefore, the target function is represented as the sum of the cross-sectional areas of edging boards. Equation of the relationship represents the relationship of the diameter of the logs in the vertex end with the size of the resulting edging boards. This relationship is described through the use of the Pythagorean Theorem. Such a representation of the mathematical model of optimization task is considered a classic one. However, the solution of this mathematical model by the classic method is proved to be problematic. For the solution of the mathematical model we used the method of Lagrange multipliers. Solution algorithm to determine the optimal dimensions of the beams and side edging boards taking into account the width of cut is suggested. Using a numerical method, optimal dimensions of the beams and planks are determined, in which the objective function takes the maximum value. It turned out that with the increase of the width of the cut, thickness of the beam increases and the dimensions of the side edging boards reduce. Dimensions of the extreme side planks to increase the width of cut is reduced to a greater extent than the side boards, which are located closer to the center of the log. The algorithm for solving the optimization problem is recommended to use for calculation and preparation of sawing schedule in the design and operation of sawmill lines for timber production. When using the proposed algorithm for solving the optimization problem the output of lumber can be increased to 3-5 %.


2013 ◽  
Vol 572 ◽  
pp. 636-639
Author(s):  
Xi Chen ◽  
Gang Wang

This paper deals with the walking stability analysis of a multi-legged crablike robot over slope using normalized energy stability margin (NESM) method in order to develop a common stabilization description method and achieve robust locomotion for the robot over rough terrains. The robot is simplified with its static stability being described by NESM. The mathematical model of static stability margin is built so as to carry out the simulation of walking stability over slope for the crablike robot that walks in double tetrapod gait. As a consequence, the relationship between stability margin and the height of the robots centroid, as well as its inclination relative to the ground is calculated by the stability criterion. The success and performance of the stability criterion proposed is verified through MATLAB simulation and real-world experiments using multi-legged crablike robot.


Author(s):  
Qinghua Yao ◽  
Xiantao Yang

In this article, the MSP430F149 is the microcontroller (MCU), and a pressure sensor, MPX5100AP, is used to measure body measurement of maximal forced expiratory volume (FEV) and peak expiratory flow rate (PEFR). The two analog signals are processed by the signal conditioning circuit, and then the corresponding digital signals are acquired by the MCU. With the related operations of multiple respiratory parameters, a built-up time of respiration signal mutation rate values and the determination of the mutation rate, a mathematical model is built among FEV, PEFR and the rate of variation. The mathematical model of the system is analyzed, and the relationship between the detection results and the degree of airway obstruction is established. Finally, the patient's condition analysis results are given directly on the LCD, which provided the objective indicators for the medical treatment of the disease.


Sign in / Sign up

Export Citation Format

Share Document