scholarly journals Experimental and Theoretical Study of the Energy Flow of a Two Stages Four Generators Adsorption Chiller

2019 ◽  
Vol 14 (2) ◽  
pp. 129-136
Author(s):  
Faeza Mahdi Hadi

This work is concerned with a two stages four beds adsorption chiller utilizing activated carbon-methanol adsorption pair that operates on six separated processes. The four beds that act as thermal compressors are powered by a low grade thermal energy in the form of hot water at a temperature range of 65 to 83 °C.  As well as, the water pumps and control cycle consume insignificant electrical power. This adsorption chiller consists of three water cycles. The first water cycle is the driven hot water cycle. The second cycle is the cold water cycle to cool the carbon, which adsorbs the methanol. Finally, the chilled water cycle that is used to overcome the building load. The theoretical results showed that average cycle cooling power is 2.15kW, while the experimental measurement revealed that the cooling capacity of the cycle is about 1.98 kW with a relative error of % 0.02. The generator and condensing temperatures are 83 and 30 °C, respectively. The coefficient of performance (COP) of that chiller was in the range of 0.37 to 0.49. The best operating point and the best working conditions were also investigated. The present chiller is superior more than the single stage, two beds adsorption chiller that works on the activated carbon methanol pair that needs a high ambient temperature.

2020 ◽  
Vol 38 (4) ◽  
pp. 1248-1261
Author(s):  
Nidal H Abu-Hamdeh ◽  
Khalid A Alnefaie

A solar tri-generation system comprises of photovoltaic thermal collectors that are used for the production of electrical power and domestic hot water simultaneously. This study presents the performance analysis of a micro-solar tri-generation system that fulfills the requirements of an off-grid single-family lodging. The main functions of this system include domestic hot water, electrical power, and cooling power production. A set of five photovoltaic thermal panels were modeled together. The electrical power generated was stored in a battery, while the hot water generated was passed through a flow diverting valve. This valve directed some of the hot water to an absorption chiller, while the remaining portion was sent to an insulated thermal storage tank for later use. Energy and exergy analyses were performed to evaluate the extracted energy’s quality and efficiency. The overall thermal energy efficiency achieved was 50.53%. The extracted energy in the form of hot water was 3777.5 W. The electrical power generated was 2984.6 W, which was sufficient for the small single-family lodging. The coefficient of performance of the absorption chiller was found to be 0.6152. The exergy efficiency achieved was 36.88%. The exergy extracted by hot water was 234.3 W, while the electrical exergy generated was 2984.6 W. The exergy extracted during refrigeration was found to be 91.22 W. Furthermore, varying wind speeds and tilt angles affected both the energy and exergy efficiencies. The tilt angle must be kept at less than 45°, and the optimum wind speed was determined to be 35 km/h.


2010 ◽  
Vol 31 (2) ◽  
pp. 77-94 ◽  
Author(s):  
Agnieszka Kuczyńska ◽  
Władysław Szaflik

Absorption and adsorption chillers applied to air conditioning systemsThis work presents an application possibility of sorption refrigerators driven by low temperature fluid for air conditioning of buildings. Thermodynamic models were formulated and absorption LiBr-water chiller with 10 kW cooling power as well as adsorption chiller with silica gel bed were investigated. Both of them are using water for desorption process with temperatureTdes= 80 °C. Coefficient of performance (COP) for both cooling cycles was analyzed in the same conditions of the driving heat source, cooling waterTc= 25 °C and temperature in evaporatorTevap= 5 °C. In this study, the computer software EES was used to investigate the performance of absorption heat pump system and its behaviour in configuration with geothermal heat source.


2019 ◽  
Vol 23 (Suppl. 4) ◽  
pp. 1143-1151 ◽  
Author(s):  
Karol Sztekler ◽  
Wojciech Kalawa ◽  
Sebastian Stefanski ◽  
Jaroslaw Krzywanski ◽  
Karolina Grabowska ◽  
...  

At present, energy efficiency is a very important issue and it is power generation facilities, among others, that have to confront this challenge. The simultaneous production of electricity, heat and cooling, the so-called trigeneration, allows for substantial savings in the chemical energy of fuels. More efficient use of the primary energy contained in fuels translates into tangible earnings for power plants while reductions in the amounts of fuel burned, and of non-renewable resources in particular, certainly have a favorable impact on the natural environment. The main aim of the paper was to investigate the contribution of the use of adsorption chillers to improve the energy efficiency of a conventional power plant through the utilization of combined heat and power waste heat, involving the use of adsorption chillers. An adsorption chiller is an item of industrial equipment that is driven by low grade heat and intended to produce chilled water and desalinated water. Nowadays, adsorption chillers exhibit a low coefficient of performance. This type of plant is designed to increase the efficiency of the primary energy use. This objective as well as the conservation of non-renewable energy resources is becoming an increasingly important aspect of the operation of power generation facilities. As part of their project, the authors have modelled the cycle of a conventional heat power plant integrated with an adsorption chiller-based plant. Multi-variant simulation calculations were performed using IPSEpro simulation software.


Author(s):  
Joseph C. Mollendorf ◽  
David R. Pendergast

Underwater workers, sport and military divers, are exposed to thermal stress since most of the waters of the world are below or above what is thermally neutral. Although divers wear insulation suits for passive thermal protection they are inadequate. Active heating is currently accomplished by resistive heating and open-flow tubes delivering hot water; however, these methods are problematic. The challenge of this project was to design, build and test an active diver thermal protection system (DTPS) to be used with wet suit insulation that is effective, user-friendly, reliable, and that could be used by a free-swimming diver. The DTPS has a minimum number of moving parts, is low maintenance, has no unsafe or toxic working fluid and uses no consumables except a safe, high density, modular electrical power source. A portable and swimmable, self-contained, electrically powered unit (DTPS) has been designed, built, and tested that produces and circulates thermally conditioned water in a closed-loop through a zoned tube suit worn by a diver under a wetsuit to maintain skin and body core temperatures within prescribed safe limits. The system has been validated by using physiological data taken on human subjects over a wide range of ambient water temperatures. Corresponding enthalpy and electrical power measurements were used as the basis of a thermodynamic analysis. The DTPS maintained skin and body core temperatures within safe and functional ranges by providing up to about 200 W of heating in cold water and up to about 330 W of cooling in hot water. The corresponding electrical power consumption was up to about 300 W in cold water and up to about 1500 W in hot water. The results of a complete audit of the power use and heat transfer are presented along with the efficiency of the thermoelectric heating/cooling modules and the duty cycle of the system for a range of water immersion temperatures from 10°C to 39°C. The DTPS proved to be an effective and reliable apparatus for diver thermal protection in water temperatures from 10°C to 39°C, which covers most of the range of the earth’s waters. The data presented here can be used to modify the design of the DTPS to meet specific needs of the diving community.


2021 ◽  
Vol 10 (4) ◽  
pp. 901-910
Author(s):  
Jehan F AlRubaiea ◽  
Farkad A Latteiff ◽  
Jasim M Mahdi ◽  
Mohammed A Atiya ◽  
Hasan Sh Majdi

There are still areas around the world suffer from severe shortage of freshwater supplies. Desalination technologies are not widely used due to their high energy usage, cost, and environmental damaging effects. In this study, a mathematical model of single-bed adsorption desalination system using silica gel-water as working pair is developed and validated via earlier experiments. A very good match between the model predictions and the experimental results is recorded. The objective is to reveal the factors affecting the productivity of fresh water and cooling effect in the solar adsorption system. The proposed model is setup for solving within the commercially-available software (Engineering Equation Solver). It is implemented to solve the mass and heat balance equations for the adsorbent bed, condenser, and evaporator components. At a typical temperature of 89 °C and flow rate of 30 m3/sec for the hot water entering the bed, the following results are reported: (a) the specific daily water production of 1.89 m3 /ton of silica gel/ day, (b) coefficient of performance of 0.32, and (c) specific cooling power of 40.82 W/kg of silica gel. The concentration of salt (X) in the product (desalinated water) has been set with value of 0.5 gm/kg to be suitable for drinking and irrigation. The salt concentration in the evaporator is estimated to be 4.611 gm/kg during the overall adsorption process. The results from this study should be of wide interest for the field of solar water desalination and air-conditioning.


1970 ◽  
Vol 3 (2) ◽  
pp. 59-67 ◽  
Author(s):  
MZI Khan ◽  
S Sultana ◽  
A Akisawa ◽  
T Kashiwagi

This paper investigates the thermodynamic framework of a three-bed advanced adsorption chiller, where the mass recovery scheme has been utilized such that the performances of this chiller could be improved and a CFC-free-based sorption chiller driven by the low-grade waste heat or any renewable energy source can be developed for the next generation of refrigeration. Silica gel-water is chosen as adsorbent-refrigerant pair. The three-bed adsorption chiller comprises with three sorption elements (SEs), one evaporator and one condenser. The configuration of SE1 and SE2 are identical, but the configuration of SE3 is taken as half of SE1 or SE2. Mass recovery process occurs between SE3 with either SE1 or SE2 and no mass recovery between SE1 and SE2 occurs. The mathematical model shown herein is solved numerically. In the present numerical solution, the heat source temperature variation is taken from 50 to 90ºC along with coolant inlet temperature at 30ºC and the chilled water inlet temperature at 14ºC. A cycle simulation computer program is constructed to analyze the influence of operating conditions (hot and cooling water temperature) on COP (coefficient of performance), SCP (specific cooling power), η (chiller efficiency) and chilled water outlet temperature. Keywords: Adsorption; COP; SCP; Mass recovery; Silica gel-waterDOI: 10.3329/jname.v3i2.920 Journal of Naval Architecture and Marine Engineering 3(2006) 59-67 


Author(s):  
V Baiju ◽  
A Asif Sha ◽  
NK Mohammed Sajid ◽  
K Muhammedali Shafeeque

This paper presents the transient model of a two-bed adsorption cooling system performed in the SIMULINK platform. The inlet chilled water temperature in the evaporator, temperature of cooling water and hot water temperature of the adsorbent bed and its effect on systems coefficient of performance, refrigeration effect and specific cooling power have been studied and presented. It is observed that the systems coefficient of performance is 0.57 when the inlet hot water temperature about 80 °C. In this study, the optimum cooling power and systems coefficient of performance are also determined in terms of the phase time, shifting duration and hot water inflow temperature. The results indicates that the cooling water and hot water inlet temperatures significantly affects the coefficient of performance, specific cooling power and cooling power of the system. The effect of mass flow rate on the cooler efficiency is also presented. A two bed adsorption system of capacity 13.5 kW having an evaporator and condenser temperatures of 6°C and 28°C, respectively, are considered for the present investigation. The adsorbent mass considered is 45 kg with a shifting duration of 20 sec. The result of this study gives the basis for performance optimization of a practical continuous operating vapour adsorption cooler.


2013 ◽  
Vol 315 ◽  
pp. 380-384
Author(s):  
Khairul Habib

This article presents a transient modeling and performance of a waste heat driven pressurized adsorption chiller. This innovative adsorption chiller employs pitch based activated carbon of type Maxsorb III as adsorbent and R507A as refrigerant as adsorbent-refrigerant pair. This chiller utilizes low-grade heat source to power the cycle. A parametric study has been presented where the effects of adsorption/desorption cycle time, switching time and regeneration temperature on the performance are reported in terms of cooling capacity and coefficient of performance (COP). Results indicate that the adsorption chiller is feasible even when low-temperature heat source is available.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 7226
Author(s):  
Karol Sztekler ◽  
Wojciech Kalawa ◽  
Łukasz Mika ◽  
Marcin Sowa

Adsorption chillers with desalination functionality, being devices characterised by very low electricity consumption, provide an alternative to conventional sources of cooling and water. The option of desalinating water means that the use of a single device enables obtaining two useful products. Adsorption chillers are not widely used at present. due to their low performance characteristics; these are, however, constantly being improved. This paper presents a verification of the possibility of increasing the cooling coefficient of performance (COP) and specific cooling power (SCP) of a laboratory adsorption chiller by optimising the length of cycle times and using a copper additive to silica gel with a mass fraction of 15% to increase heat transport in the bed. The choice of copper among other considered additives was determined by the conclusions from the research on the sorption kinetics of various mixtures, price and availability, and a high thermal conductivity. The device was operated in a two-bed mode aimed at producing cooling. The adsorbate was distilled water. The results were compared with those obtained under similar conditions when the beds were only filled with silica gel. As a result of the testing, it was found that the use of the copper additive with the sorbent increased both the COP and SCP. The tests were performed for different cycle times, of 100, 200, 300 and 600 s. With increasing cycle time COP also increased. In contrast, the specific cooling power increased only up to a certain point, whereafter its value decreased.


2021 ◽  
Vol 6 ◽  
pp. 29
Author(s):  
Nayrana Daborer-Prado ◽  
Alois Resch

Adsorption refrigeration, as a renewable cooling method, has received more attention in the last few years. The interest in this technology comes especially from developing and tropical countries, where the demand for cooling increases every year due to economy and population growth. Based on this scenario, this work aims to develop a numerical model of an adsorption chiller driven with solar energy, which can be used to optimize the cooling system operation of the building where the device is situated and compare it with the current cooling methods in use. The numerical study here presented was created using Matlab/Simulink™, it is based on a lumped parameter model that relies on physical properties and represents a cooling system using a pair of silica gel-water in a two-bed chiller. In this study, the authors proposed a simplified version of the system and the numerical model, which aims to reduce the simulation time and provide faster results. Besides the temperatures in the system, which range from 52 °C to 72 °C in the hot cycle and 12 °C to 23 °C in the chilled water cycle, the results also include the variation of water uptake in the two adsorbent beds. In general, the simulated temperature, cooling and heating power and coefficient of performance (COP) are in fair agreement with the literature data, nevertheless, the final results show that improvements still have to be performed.


Sign in / Sign up

Export Citation Format

Share Document