scholarly journals Fabrication of Advanced Cement Mortar for Building Anti-Bacterial Applications

2019 ◽  
Vol 15 (1) ◽  
pp. 89-96
Author(s):  
Farhad M. Othman ◽  
Alaa A. Abdul-hamead ◽  
Noor A. Hmeed

In this research, we have added nano anatase TiO2 as a partial replacement of Portland cement by a weight percentage of (0.25 to 1%) for the development of properties for protection against bacteria. The control mix was made by using "the cement to sand" proportion about (1: 2.75) with the "water to cement" proportion of (0.5) to study the structure, porosity, water absorption, density, mechanical properties, as well as anti-bacterial behavior. Inspections have been done such as scanning electron microscopy (SEM), and atomic force microscope (AFM) for mortar. Experimental results showed that after the addition of Nano powders in cement mortar, the structural properties improved significantly with the development of hydration of cement mortar at early age, reduction of porosity and the increase of density as well as enhancement in compressive and anti-bacteria properties that make the preparation of nano material very suitable for protection against bacteria.

Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 652
Author(s):  
Divine Sebastian ◽  
Chun-Wei Yao ◽  
Lutfun Nipa ◽  
Ian Lian ◽  
Gary Twu

In this work, a mechanically durable anticorrosion superhydrophobic coating is developed using a nanocomposite coating solution composed of silica nanoparticles and epoxy resin. The nanocomposite coating developed was tested for its superhydrophobic behavior using goniometry; surface morphology using scanning electron microscopy and atomic force microscopy; elemental composition using energy dispersive X-ray spectroscopy; corrosion resistance using atomic force microscopy; and potentiodynamic polarization measurements. The nanocomposite coating possesses hierarchical micro/nanostructures, according to the scanning electron microscopy images, and the presence of such structures was further confirmed by the atomic force microscopy images. The developed nanocomposite coating was found to be highly superhydrophobic as well as corrosion resistant, according to the results from static contact angle measurement and potentiodynamic polarization measurement, respectively. The abrasion resistance and mechanical durability of the nanocomposite coating were studied by abrasion tests, and the mechanical properties such as reduced modulus and Berkovich hardness were evaluated with the aid of nanoindentation tests.


2013 ◽  
Vol 28 ◽  
pp. 59-66
Author(s):  
Sharmila Pradhan ◽  
Stefanie Scholtissek ◽  
Ralf Lach ◽  
Werner Lebek ◽  
Wolfgang Grellmann ◽  
...  

The nanocomposites based on sulfonated ethylene/1-octene copolymer (sEOC) and organophilic modified layered silicate were synthesized. The morphology of the ionomeric product was studied with the help of Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Fourier Transform Infrared (FTIR) spectroscopy and microhardness measurements. It was shown that via the solution cast technique, the nanocomposite with uniformly distributed filer morphology can be conveniently prepared. The significant enhancement of the mechanical properties due to ionomerization was attested with the help of depth sensing microhardness measurements. It was found that the hardness of ionomer nanocomposite comprising 5 wt.-% layered silicate is approximately four fold of the neat elastomer. DOI: http://dx.doi.org/10.3126/jncs.v28i0.8060 Journal of Nepal Chemical Society Vol.28, 2011 Page : 59-66 Uploaded date: May 7, 2013


2012 ◽  
Vol 576 ◽  
pp. 417-420 ◽  
Author(s):  
N.N. Hafizah ◽  
Ismail Lyly Nyl ◽  
M.Z. Musa ◽  
Mohamad Rusop Mahmood

In this study, PMMA/TiO2 nanocomposite thin films were prepared by using sonication spin coating technique. The PMMA and TiO2 solution were mixed together and sonicated for 1h to confirm the homogeneity of the sample. The thin films obtained were then measured using atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM) and Fourier transform infrared (FTIR). FESEM micrograph reveals that the uniformity increases with the increase of TiO2 weight percentage.


2015 ◽  
Vol 723 ◽  
pp. 502-506
Author(s):  
Yu Luo ◽  
Qing Yun Chen ◽  
Huan Yuan ◽  
Ming Xu ◽  
Shu Long Huang

The effects of nano-diamond seeds on the performance of diamond-like carbon (DLC) films were investigated. In this study, the high uniform DLC films were deposited on substrates seeded with nano-diamond by using a magnetron sputtering system. Then, the effects of nano-diamond seeds on DLC films were determined. Raman spectroscopy revealed a decrease of sp3 fraction due to the introduction of nano-diamond seeds. Atomic force microscope (AFM) observed all samples have an average root mean square (RMS) roughness of 1.8 nm. Scanning electron microscopy (SEM) displayed that a large number of small size conical hillock geometrical anomalies can be caused by nano-diamond seeds. Indentation tests revealed that nano-diamond seeds can enhance the hardness of DLC films, whose hardness range is from 28.3 GPa to 32.1 GPa in this work.


2012 ◽  
Vol 1424 ◽  
Author(s):  
Russell J. Bailey ◽  
Beatriz Cortes-Ballesteros ◽  
Hao Zhang ◽  
Congwei Wang ◽  
Asa H. Barber

ABSTRACTThe mechanical properties of individual electrospun polystyrene fibers with sub-micron diameters were measured using a combination of atomic force microscopy (AFM) and scanning electron microscopy (SEM). The strain to failure of the electrospun fibers was observed to increase as the fiber diameter decreased. This size dependent mechanical behavior in individual electrospun polystyrene fibers indicates a suppression of localized failure and a shift away from crazing that is dominant in bulk samples.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 152
Author(s):  
Ewa Olewnik-Kruszkowska ◽  
Arkadiusz Adamczyk ◽  
Magdalena Gierszewska ◽  
Sylwia Grabska-Zielińska

The aim of this work involved comparing the effect graphite and shungite have on the properties of dielectric elastomer-based materials. For this reason, dielectric elastomer–Sylgard (S) was filled with 1, 3, 5, 10, and 15 wt.% of graphite (G) and shungite (Sh). The structure of the obtained materials was studied by means of scanning electron microscopy and atomic force microscopy. The influence of the introduced additives on the thermal stability of the obtained composites was evaluated using thermogravimetry. Moreover, the mechanical properties and the dielectric constant of the elastomer with an addition of graphite and shungite were determined. Obtained results allowed us to establish that the presence of graphite as well as shungite significantly influences mechanical as well as dielectric properties. Additionally, the optimum mass of additives, allowing to increase the dielectric constant without the significant decrease of strain at break, was indicated. In the case of materials containing graphite, regardless of the filler content (1–15 wt.%), the mechanical as well as the dielectric properties are improved, while in the case of composites with an addition of shungite exceeding the 5 wt.% of filler content, a reduced tensile strength was observed.


Materials ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 230 ◽  
Author(s):  
Furqan Farooq ◽  
Arslan Akbar ◽  
Rao Arsalan Khushnood ◽  
Waqas Latif Baloch Muhammad ◽  
Sardar Kashif Ur Rehman ◽  
...  

Carbon nanotubes (CNTs) and graphite nanoplatelets (GNPs) belong to the family of graphite nanomaterials (GNMs) and are promising candidates for enhancing properties of cementitious matrix. However, the problem lies with their improper dispersion. In this paper graphite nanoplatelets are used with carbon nanotubes for dispersion facilitation of CNTs in cement mortar. The intended role is to use the GNPs particles for dispersion of CNTs and to investigate the synergistic effect of resulting nano-intruded mortar. Mechanical properties such as flexure and compressive strength have been studied along with volumetric stability, rheology, and workability. Varying dosages of CNTs to GNPs have been formulated and were analyzed. The hybrid use of CNTs-GNPs shows promise. Scanning electron microscopy reveals that hybrid CNTs/GNPs are well-suited for use in cement mortar composite performing a dual function.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3089-3089
Author(s):  
Andre E.X. Brown ◽  
Rustem I. Litvinov ◽  
Prashant Purohit ◽  
Dennis E. Discher ◽  
John Weisel

Abstract Although we know a great deal about the structure, properties and many functions of fibrin(ogen), we still know very little about the microscopic and molecular origins of the clot’s mechanical properties, even though they are necessary for its functions, since hemostasis is essentially a mechanical process. In addition, it has been shown that individuals who have myocardial infarction at an early age tend to form very stiff clots. We have carried out studies at different levels of structure and integrated the results through a model that demonstrates that fibrin clot mechanical properties are manifestations of the observed mechanical characteristics of fibrin(ogen) molecules. By stretching whole fibrin clots with an extensional rheometer, we observed fibrin’s remarkable extensibility with a mechanical response that was initially linear with an increase in stiffness at larger elongation, above two-fold. These results are consistent with the large extensibility that has been observed in single fibrin fibers and may also play a role in the mechanics of blood clots at high strain, as in arterial blood flow. Furthermore, we found that protein structural transitions are required even at lower elongations. Some of the corresponding structural changes in the clots with stretching up to about four-fold were observed by electron microscopy. Scanning electron microscopy of the clots revealed extensive reorientation of the fibers making up the clots in the direction of applied stress. The orientational order was quantified from the scanning electron microscope images using a custom, automated image analysis algorithm that calculates a network order parameter, revealing a high degree of alignment for stretched, initially unoriented fibrin gels. Crosssections of stretched clots were examined by transmission electron microscopy. The most striking change observed was a huge (up to 10-fold) decrease in volume with stretching, with aggregation or bundling of fibers. Basic features of the mechanics of single fibrin fibers are known. These measurements have recently been extended to the level of single molecules using atomic force microscopy. When factor XIIIa-ligated fibrinogen oligomers were stretched by atomic force microscopy, the coiled-coils were found to unfold first under force. Until now, these observations at the molecular and fiber levels have not been correlated with the behavior of whole fibrin clots. These levels of structure were bridged through small angle X-ray fiber diffraction patterns obtained from fibrin clots, since the primary peaks in the X-ray diffraction pattern correspond to the characteristic 22.5 nm repeat distance in fibrin fibers arising from the molecular packing. In contrast to some earlier reported results, there was no change in periodicity with stretching. Instead, these peaks broadened as the sample was stretched, consistent with structural disruptions like protein unfolding while the position of the 22.5 nm peak corresponding to the fibrin repeat remained constant. Since all of these measurements are quantitative, we developed a constitutive model, including all of the features observed, that suggests that the whole clot and fiber mechanical properties are a consequence of coiled-coil unfolding. All together, this study has allowed us to develop a truly multiscale understanding of fibrin mechanics that reveals how clots or thrombi, even though they are made up of relatively stiff fibers, can still have large extensibility that allows them to withstand large strains and open and permeable structures such that they are readily lysed. Understanding how the network, fiber, and molecular properties give rise to fibrin mechanics could contribute to designs of tougher or more extensible clots or lead to new strategies for breaking up clots or making them less occlusive.


Author(s):  
Li Li-Sheng ◽  
L.F. Allard ◽  
W.C. Bigelow

The aromatic polyamides form a class of fibers having mechanical properties which are much better than those of aliphatic polyamides. Currently, the accepted morphology of these fibers as proposed by M.G. Dobb, et al. is a radial arrangement of pleated sheets, with the plane of the pleats parallel to the axis of the fiber. We have recently obtained evidence which supports a different morphology of this type of fiber, using ultramicrotomy and ion-thinning techniques to prepare specimens for transmission and scanning electron microscopy.


2017 ◽  
Vol 68 (11) ◽  
pp. 2700-2703 ◽  
Author(s):  
Kamel Earar ◽  
Vasile Iulian Antoniac ◽  
Sorana Baciu ◽  
Simion Bran ◽  
Florin Onisor ◽  
...  

This study examined and compared surface of human dentine after acidic etching with hydrogen peroxide, phosphoric acid liquid and gel. Surface demineralization of dentin is necessary for a strong bond of adhesive at dental surface. Split human teeth were used. After application of mentioned substances at dentin level measures of the contact angle and surface morphology were employed. Surface morphology was analyzed with the help of scanning electron microscopy and atomic force microscopy. Liquid phosphoric acid yielded highest demineralization showing better hydrophobicity than the rest, thus having more contact surface. Surface roughness are less evident and formed surface micropores of 4 �m remained open after wash and air dry providing better adhesive canalicular penetration and subsequent bond.


Sign in / Sign up

Export Citation Format

Share Document