scholarly journals Lime Fertilizer with Prolonged Balanced Effect Period

2018 ◽  
Vol 3 (1) ◽  
pp. 42
Author(s):  
Valli Loide ◽  
Julia Nikolajeva ◽  
Ahto Rani

<p><em>Soil acidification and decalcification are mostly continuous. From the aspect of soil quality maintenance and improvement, the soil requires stable calcium content. The more acidic is the soil and the finer are the lime fertilizer particles, the easier they dissolve, and the soil becomes poor in calcium. In order to modify the rate and duration of lime fertilizer dissolution, this work included investigation of solubility and dissolution rates of various fractions of limestone. Based on the dissolution rates of particles with different sizes, the content of different fractions can be calculated so as to make the solubility of lime fertilizer more stable and long-term. A long-term uniform solubility provides a more stable available calcium content in the soil, which facilitates the formation and development of beneficial soil characteristics. In the field trials, upon liming with a fertiliser with prolonged effect time, the content of available Ca in soil was more stable and remained at optimum level also in 4<sup>rd</sup></em>-<em>5<sup>th</sup> year. </em></p>

1964 ◽  
Vol 36 (1) ◽  
pp. 51-55
Author(s):  
Yrjö Pessi

On the basis of the experience gained in the long-term field tests at the Experimental Station of Leteensuo, some of the factors have been examined which have to be taken into consideration when tests of this kind are established. It is noted that in the course of time the soil may become increasingly inhomogeneous, e.g. owing to sludge brought in by inundations, and owing to the wear of the peat on cultivated peat land. An initial shaping of the soil surface is essential in the case of cultivated peat lands because non-uniform settling of the soil may occur in the course of time in the test area. The soil surface of the different test members may also settle in different degrees, depending on the treatment involved in the test. Because of soil transportation from one test plot to another, caused by the tilling operations, the location and shape of the test plots are of significance in long-term tests intended to clarify questions associated with soil characteristics.


2018 ◽  
Vol 69 (3) ◽  
pp. 688-692
Author(s):  
Lucian Nita ◽  
Dorin Tarau ◽  
Gheorghe Rogobete ◽  
Simona Nita ◽  
Radu Bertici ◽  
...  

The issue addressed relates to an area of 1891694 ha of which 1183343 ha are agricultural land (62, 56) located in the south-west of Romania and refer to the use of soil chemical and physical properties as an acceptor for certain crop systems, with minimal undesirable effects both for plants to be grown, as well as soil characteristics and groundwater surface quality. It is therefore necessary on a case-by-case basis, measure stoc or rect the acidic reaction by periodic or alkaline calculations, the improvement of plant nutrition conditions through ameliorative fertilization and the application of measures to improve the physical state, sufficient justification for the need to develop short and long term strategies for the protection and conservation of edifying factors and the need to respect the frequency of field and laboratory investigations at all 8x8 km grids of the National Soil-Grounds Monitoring System (organized by I.C.P.A.) and completing it with the relevant pedological and agrochemical studies.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 291
Author(s):  
Ramón Bienes ◽  
Maria Jose Marques ◽  
Blanca Sastre ◽  
Andrés García-Díaz ◽  
Iris Esparza ◽  
...  

Long-term field trials are essential for monitoring the effects of sustainable land management strategies for adaptation and mitigation to climate change. The influence of more than thirty years of different management is analyzed on extensive crops under three tillage systems, conventional tillage (CT), minimum tillage (MT), and no-tillage (NT), and with two crop rotations, monoculture winter-wheat (Triticum aestivum L.) and wheat-vetch (Triticum aestivum L.-Vicia sativa L.), widely present in the center of Spain. The soil under NT experienced the largest change in organic carbon (SOC) sequestration, macroaggregate stability, and bulk density. In the MT and NT treatments, SOC content was still increasing after 32 years, being 26.5 and 32.2 Mg ha−1, respectively, compared to 20.8 Mg ha−1 in CT. The SOC stratification (ratio of SOC at the topsoil/SOC at the layer underneath), an indicator of soil conservation, increased with decreasing tillage intensity (2.32, 1.36, and 1.01 for NT, MT, and CT respectively). Tillage intensity affected the majority of soil parameters, except the water stable aggregates, infiltration, and porosity. The NT treatment increased available water, but only in monocropping. More water was retained at the permanent wilting point in NT treatments, which can be a disadvantage in dry periods of these edaphoclimatic conditions.


GEOMATICA ◽  
2019 ◽  
Vol 73 (4) ◽  
pp. 93-106
Author(s):  
Colin Minielly ◽  
O. Clement Adebooye ◽  
P.B. Irenikatche Akponikpe ◽  
Durodoluwa J. Oyedele ◽  
Dirk de Boer ◽  
...  

Climate change and food security are complex global issues that require multidisciplinary approaches to resolve. A nexus exists between both issues, especially in developing countries, but little prior research has successfully bridged the divide. Existing resolutions to climate change and food security are expensive and resource demanding. Climate modelling is at the forefront of climate change literature and development planning, whereas agronomy research is leading food security plans. The Benin Republic and Nigeria have grown and developed in recent years but may not have all the tools required to implement and sustain long-term food security in the face of climate change. The objective of this paper is to describe the development and outputs of a new model that bridges climate change and food security. Data from the Intergovernmental Panel on Climate Change’s 5th Regional Assessment (IPCC AR5) were combined with a biodiversity database to develop the model to derive these outputs. The model was used to demonstrate what potential impacts climate change will have on the regional food security by incorporating agronomic data from four local underutilized indigenous vegetables (Amaranthus cruentus L., Solanum macrocarpon L., Telfairia occidentalis Hook f., and Ocimum gratissimum L.). The model shows that, by 2099, there is significant uncertainty within the optimal recommendations that originated from the MicroVeg project. This suggests that MicroVeg will not have long-term success for food security unless additional options (e.g., new field trials, shifts in vegetable grown) are considered, creating the need for need for more dissemination tools.


Author(s):  
Layne W. Rogers ◽  
Alyssa M. Koehler

Macrophomina phaseolina is a soilborne fungal pathogen in the family Botryosphaeriaceae. Microsclerotia of M. phaseolina were first observed at the base of overwintering stevia stems in North Carolina in spring 2016. Previous studies utilized destructive sampling methods to monitor M. phaseolina in stevia fields; however, these methods are not feasible for long-term monitoring of disease in a perennial system. In the current study, nondestructive root soil-core sampling was conducted during overwintering months, from October 2018 to January 2020, to monitor M. phaseolina root colonization in stevia in Rocky Mount, NC. Two-inch-diameter soil cores were collected through the root zone, and fresh weight of roots was recorded for each soil core. M. phaseolina recovery was evaluated by examining mycelial growth from roots plated onto potato dextrose agar. There was no significant effect of sample weight on M. phaseolina across all dates, but there was one date for which sample weight had a significant effect on recovery (P = 0.01; α = 0.05). For both recovery and sample weight, sampling date was a significant predictor (P = 1.68e-5 and P = 0.0389, respectively; α = 0.05). Weather and climate data revealed that dates with no M. phaseolina recovery had lowest mean air and soil temperatures and the greatest number of days below freezing in the month prior to sampling. In separate sampling years, October sampling dates had the highest recovery of M. phaseolina. Future field trials should determine if October samplings can predict survival and vigor of reemerging stevia plants.


2004 ◽  
Vol 85 (1) ◽  
pp. 61-77 ◽  
Author(s):  
S.M. Haefele ◽  
M.C.S. Wopereis ◽  
A.-M. Schloebohm ◽  
H. Wiechmann

2009 ◽  
Vol 8 (3) ◽  
pp. 48-52
Author(s):  
M. G. Kartalov ◽  
S. Ye. Dmitruk ◽  
V. S. Dmitruk ◽  
T. V. Romanenko

In this article the structure-mechanical properties research results of «Kartalin» ointment are being cited. This ointment shows the evident treatment-preventive activity with occupational and combinational dermatosis. It has been ascertained that the «Kartalin» ointment, being under consideration, appears to be structural liquid with expressive non-Newtonian flow character that is having high viscosity (100—200 Pa/s) and high yield point (20—40 Pa) with the temperature of usage 30—40 °C, which provides long skin protection. The flow properties of the composition are sufficiently time stable, which enables good preparation quality maintenance during long-term storing.


Author(s):  
Fraser King ◽  
Jenny Been ◽  
Robert Worthingham ◽  
Grant Rubie

Three-layer FBE-polyolefin coatings offer the promise of good adhesive and corrosion properties from the FBE layer coupled with resistance to mechanical damage from the outer polyolefin layer. TransCanada Pipelines have been investigating the long-term behaviour of High Performance Composite Coating (HPCC) using a combination of laboratory testing and field trials. In the laboratory, panels of HPCC were subjected to standard CD disbondment testing following a two-stage degradation process. The degradation process, designed to simulate field exposure, involved impact damage followed by exposure to either a hot-water soak (60°C), or to microbiologically active soil with and without the application of CP. Following exposure, the duplicate panels were subject to 28-day CD disbondment tests to determine the extent of damage caused by the combination of impact and soil/hot water exposure. In the field, a section of HPCC coating was excavated and examined after 11 years service. In addition to visual inspection, the coating was examined in situ using a newly developed impedance technique EISPlus. This technique is a development of earlier EIS techniques and allows the dielectric properties of the coating to be determined in addition to the impedance of the solution-filled pores. EISPlus provides an improved sensitivity for high-impedance coatings, such as FBE, HPCC, and polyolefin tape. Furthermore, since it is a dry technique, rapid measurements can be made on coatings exposed to field conditions allowing the in-service performance to be determined. Results of both the laboratory testing and field EISPlus measurements are presented and the long-term performance of the coating discussed.


Author(s):  
Katherine East ◽  
Inga Zasada ◽  
R. Paul Schreiner ◽  
Michelle Marie Moyer

Vineyard replanting in Washington state can be negatively impacted by the plant-parasitic nematode Meloidogyne hapla. Chemically-focused nematode management programs do not offer long-term suppression, however, this may be achieved through the adoption of cultural approaches such as rootstocks and irrigation. Nematode-resistant rootstocks are used extensively in other regions, but many have not been tested against M. hapla. Vineyards in eastern Washington are irrigated, so manipulating available soil water may also impact nematode development. In 2017, two field trials were established in eastern Washington to evaluate the effects of: 1) late-summer water limitation on M. hapla population development, and 2) host status of 1103 Paulsen, 3309 Couderc and Matador rootstocks for M. hapla. The efficacy of these cultural management approaches was evaluated under three initial M. hapla densities (0, 50, and 250 M. hapla J2 per 250 g soil) in both trials. Reducing irrigation to manage M. hapla infestation of grape roots was ineffective and may cause harm to the vines by inducing too much water stress. Conversely, rootstocks effectively reduced population densities of M. hapla. Overall, rootstocks show the most promise as a cultural tool to manage M. hapla during the establishment phase in Washington vineyards.


2020 ◽  
Vol 740 ◽  
pp. 140137 ◽  
Author(s):  
Chongyang Yang ◽  
Ying-Ning Ho ◽  
Chihiro Inoue ◽  
Mei-Fang Chien
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document