scholarly journals TREATMENT OF FLUORIDE BEARING CONTAMINATED WATER USING SIMULTANEOUS ADSORPTION AND BIODEGRADATION IN A LABORATORY SCALE UP: FLOW BIO-COLUMN REACTOR BY JAVA PLUM SEED

Author(s):  
Tej Pratap Singh ◽  
Sanjoy Ghosh ◽  
Majumder Cb

ABSTRACTObjective: Here, we aimed for the treatment of fluoride bearing contaminated water using simultaneous adsorption and biodegradation in a biocolumnreactor by using java plum seed.Methods: We immobilized Acinetobacter baumannii bacteria on the java plum seed in the bio-column reactor. The water used contained a sample offluoride with concentration of 20 mg/L. The bed depth service time design model and empty bed residence time were used to analyze the performance thebio-column. We examined and observed closely the effect of different operating parameters such as flow rate of bed depth and initial concentration on thissimplified bio-column reactor design model. Desorption experiment was conducted to evaluate the possibilities of regeneration and to reutilize of media.Results: We observed that the bio-column reactor is capable to reduce the concentration of the pollutants in the effluent water below their permissiblelimit. Reduction in DO along the bed height of the reactor was also observed, which supports the aerobic nature of the bacteria.Conclusion: The experimental results were encouraging and indicate that java plum (Syzygium cumini) seed is a feasible option to use as a biosorbentto remove fluoride in the bio-column reactor.Keywords: Bio-reactor, Simultaneous adsorption and biodegradation, Flow rate, Acinetobacter baumannii MTCC 11451, Physicochemical adsorption,Bed depth service time, Empty bed residence time.

2017 ◽  
Vol 36 (1-2) ◽  
pp. 215-232 ◽  
Author(s):  
Jaime López-Cervantes ◽  
Dalia I Sánchez-Machado ◽  
Reyna G Sánchez-Duarte ◽  
Ma A Correa-Murrieta

A continuous adsorption study in a fixed-bed column was carried out using a chitosan–glutaraldehyde biosorbent for the removal of the textile dye Direct Blue 71 from an aqueous solution. The biosorbent was prepared from shrimp shells and characterized by scanning electron microscopy, X-ray diffraction, and nuclear magnetic resonance spectroscopy. The effects of chitosan–glutaraldehyde bed height (3–12 cm), inlet Direct Blue 71 concentration (15–50 mg l−1), and feed flow rate (1–3 ml min−1) on the column performance were analyzed. The highest bed capacity of 343.59 mg Direct Blue 71 per gram of chitosan–glutaraldehyde adsorbent was obtained using 1 ml min−1 flow rate, 50 mg l−1 inlet Direct Blue 71 concentration, and 3 cm bed height. The breakthrough curve was analyzed using the Adams–Bohart, Thomas, and bed depth service time mathematical models. The behaviors of the breakthrough curves were defined by the Thomas model at different conditions. The bed depth service time model showed good agreement with the experimental data, and the high values of correlation coefficients (R2 ≥ 0.9646) obtained indicate the validity of the bed depth service time model for the present column system.


1996 ◽  
Vol 13 (5) ◽  
pp. 367-375 ◽  
Author(s):  
Yehia H. Magdy

The adsorption of mixed dyes, Acid Blue and Basic Red, on to hardwood sawdust has been studied using the fixed bed technique. The influence of various parameters such as bed depth, solution flow rate and dye concentration were studied. The modified bed depth service time (BDST) model has been used to analyze the experimental data. In addition the empty bed residence time (EBRT) technique has been applied to optimize the adsorption process variables for either single or multi-component dyes.


2003 ◽  
Vol 3 (5-6) ◽  
pp. 67-72
Author(s):  
S. Takizawa ◽  
T. Win

In order to evaluate effects of operational parameters on the removal efficiency of trichloroethylene and 1,1,1-trichloroethene from water, lab-scale experiments were conducted using a novel hollow-fibre gaspermeable membrane system, which has a very thin gas-permeable membrane held between microporous support membranes. The permeation rate of chlorinated hydrocarbons increased at higher temperature and water flow rate. On the other hand, the effects of the operational conditions in the permeate side were complex. When the permeate side was kept at low pressure without sweeping air (pervaporation), the removal efficiency of chlorinated hydrocarbon, as well as water permeation rate, was low probably due to lower level of membrane swelling on the permeate side. But when a very small amount of air was swept on the membrane (air perstripping) under a low pressure, it showed a higher efficiency than in any other conditions. Three factors affecting the permeation rate are: 1) reduction of diffusional boundary layer within the microporous support membrane, 2) air/vapour flow regime and short cutting, and 3) the extent of membrane swelling on the permeate side. A higher air flow, in general, reduces the diffusional boundary layer, but at the same time disrupts the flow regime, causes short cutting, and makes the membrane dryer. Due to these multiple effects on gas permeation, there is an optimum operational condition concerning the vacuum pressure and the air flow rate. Under the optimum operational condition, the residence time within the hollow-fibre membrane to achieve 99% removal of TCE was 5.25 minutes. The log (removal rate) was linearly correlated with the average hydraulic residence time within the membrane, and 1 mg/L of TCE can be reduced to 1 μg/L (99.9% removal).


2010 ◽  
Vol 61 (3) ◽  
pp. 599-606 ◽  
Author(s):  
Johnsely S. Cyrus ◽  
G. B. Reddy

Constructed wetland systems have gained attention as attractive solutions for wastewater treatment. Wetlands are not efficient to treat wastewater with high concentrations of phosphorus (P). In order to remove high soluble P loads by wetland, sorbent beds can be added prior to the discharge of wastewater into wetlands. Sorption by sorbent materials is identified as a method for trapping excess P in wastewaters. In the present investigation, shale has been identified as a sorbent material for removal of phosphate (PO4-P) due to the cost effectiveness, stability and possibility of regeneration. The study focuses on the removal of PO4-P from wastewater using shale and the feasibility of using the P-sorbed material as slow-release fertilizer. Phosphorus sorption experiments were conducted by using shale (2 mm and 2–4.7 mm). Results indicate that Shale I (particle size = 2 mm) showed the highest sorption of PO4-P (500 ± 44 mg kg−1). Breakthrough point was reached within 10 h in columns with flow rates of 2 and 3 ml min−1. Lower flow rate of 1 ml min−1 showed an average residence time of about 2 h while columns with a higher flow rate of 3 ml min−1 showed a residence time of about 40 minutes. Variation in flow rate did not influence the desorption process. Since very low concentrations of PO4-P are released, Shale saturated with PO4-P may be used as a slow nutrient release source of P or as a soil amendment. The sorbent can also be regenerated by removing the sorbed PO4-P by using 0.1 N HCl.


2022 ◽  
Vol 10 (4) ◽  
pp. 22-30
Author(s):  
S. Valliammai ◽  
K. Gopal ◽  
R. Nithya ◽  
L. Rama Priya ◽  
D. Kavitha

A continuous adsorption study in a fixed-bed column was carried out using Multi-walled Carbon Nanotubes derived from Rosmarinus officinalis oil as an adsorbent for removing the textile dye Acid blue 40 from an aqueous solution. The adsorbent, MWNTs were prepared from Rosmarinus officinalis oil as a precursor to Fe/Mo catalyst supported on silica at 650 ºC under N2 atmosphere by spray pyrolysis process characterized by scanning electron microscopy, Transmission Electron microscopy, and Raman spectroscopy. The effects of adsorbent bed height (2–6 cm), initial ion concentration (20– 60 mg/L), and flow rate (10–30 mL/min) on the column performance were analyzed. The breakthrough curve was analyzed using the mathematical models of Thomas, Yoon-Nelson, and bed depth service time. The Thomas model at different conditions defined the behaviors of the breakthrough curves. The bed depth service time model showed good agreement with the experimental data. The high values of correlation coefficients (R2 0.9875) obtained indicate the validity of the bed depth service time model for the present column system.


1998 ◽  
pp. 358-360

Author(s):  
Suttikorn Suwannatrai ◽  
Dickson Y. S. Yan ◽  
Pummarin Khamdahsag ◽  
Visanu Tanboonchuy

Arsenite (As(III)) has threatened human life for ages. It is a necessity to remove As(III) from the contaminated water before general use. With the improvement of adsorption, higher As(III) removal can be achieved. This study aimed to develop zeolite/cerium oxide coat-on activated alumina ball adsorbent (CeZ-ball) with the aid of PVA binder and apply it to a fixed-bed continuous flow column for As(III) adsorption. The coating percentage of CeZ-ball was studied. Cerium ions leaching from CeZ-ball were monitored throughout the 2,880-min-column run to confirm the stability of CeZ attached to an activated alumina ball. Surface area, pH point of zero charge, and structural property of CeZ-ball were characterized. An average CeZ coating of 83.3% and rare leaching of cerium proved the coating method. The models proposed by Yoon-Nelson provided the most satisfactory fit with the breakthrough curve (r2 = 0.985, MPSD = 2.547, and q0 = 3.481 mg·g–1) under experimental conditions of the flow rate of 5 mL·min–1, As(III) influent concentration of 1 mg·L–1, and CeZ-ball weight of 40 g. The half-time of breakthrough (τ) was 1,228.739 min. The effects of the key parameters, including initial adsorbent weight, initial flow rate, and initial As(III) concentration, were investigated for the performance of As(III) adsorption. Simulated from the Yoon-Nelson model, the τ increased as well as the adsorbent weight but decreased as the flow rate increased, thus impacting the As(III) concentration. With the optimal condition, the fixed-bed continuous column with CeZ-ball could be used in As(III) removal from contaminated water.


Author(s):  
Tej Pratap Singh ◽  
Sanjay Ghosh ◽  
Majumder Cb

ABSTRACTObjective: The quality of drinking water is important for public safety and quality of life. Thus, providing every person on earth safe drinking waterseems to be the biggest challenge in front of mankind. For this purpose, here we have investigated the fluoride removal capacity of java plum.Methods: In this study, removal of fluoride from industrial wastewater using fixed-bed reactor adsorption techniques by java plum seed (Syzygiumcumini) was investigated. Fixed-bed column experiments were carried out for different bed depths, influent fluoride concentrations, and various flowrates. The Thomas model and bed depth service time model were applied to the experimental results. Both model predictions verify the experimentaldata for all the process parameters studied, indicating that the models were suitable for java plum (S. cumini) seeds (Biosorbent) fix-bed columndesign.Results: The empty bed residence time (EBRT) model optimizes the EBRT, and the Thomas model showed that the adsorption capacity is stronglydependent on the flow rate, initial fluoride concentration, and bed depth and is greater under conditions of a lower concentration of fluoride, lowerflow rate, and higher bed depth.Conclusion: The experimental results were encouraging and indicate that java plum (S. cumini) seed is a feasible option to use as a biosorbent toremove fluoride in a fixed bed adsorption process.Keywords: Adsorption, Column experiment, Thomas model, Empty bed residence time, Java plum.


Author(s):  
Julie Flouret ◽  
Yves Barré ◽  
Hervé Muhr ◽  
Edouard Plasari

The coprecipitation is a robust and inexpensive process for the treatment of important volumes of low and intermediate radioactive level liquid wastes. Its major inconvenient is the huge volume of sludge generated. The purpose of this work is to optimize the industrial coprecipitation continuous process by achieving the following objectives: - maximize the decontamination efficiency; - minimize the volume of sludge generated by the process; - reduce the treatment cost decreasing the installation volume. An innovative reactor with an infinite recycling ratio was therefore designed. It is a multifunctional reactor composed of two zones: a perfectly mixed precipitation zone and a classifier to perform liquid-solid separation. The experiments are focused on the coprecipitation of strontium by barium sulphate. The effluent containing sulphate ions and the barium nitrate solution are injected in the reaction zone where strontium and barium coprecipitate as sulphates. The produced solid phase is returned into the reaction zone by the classifier and goes out slowly from the reactor bottom with a residence time much higher than the liquid phase. This creates both a high concentration of solid phase in the reaction zone and a high efficiency of decontamination. The experimental conditions simulate the industrial effluents. The total treatment flow rate is 17 L/h, with an effluent flow rate of 16 L/h and a reactive flow rate of 1 L/h, hence a mean residence time of 10 minutes. In these experimental conditions, the molar ratio sulphate/barium after mixing corresponds to 4.9. These conditions are used in the reprocessing plant of La Hague. The decontamination factor reached in these experimental conditions is excellent: DF = 1500. The decontamination factor obtained with the classical continuous process is only equal to 60. Different process parameters are studied in order to optimize the reactor/classifier: residence time, barium nitrate flow rate and racking flow rate. The decrease of barium nitrate flow rate reduces the volume of sludge generated by the process keeping a high efficiency of strontium decontamination: DF = 400. An excess of sulphate is necessary to perform an efficient decontamination, but the molar ratio sulphate/barium can be reduced to 3 instead of 4.9 used industrially. The reactor/classifier also represents an efficient device for the coprecipitation process intensification. Indeed, it can sensibly reduce the final installation size while treating important volume of effluents. This innovative reactor optimizes both the decontamination efficiency of radioactive liquid wastes and the reduction of sludge volume. A reduction of sulphate ions in the discharge is also possible, which is environmentally friendly.


2020 ◽  
Vol 22 (1) ◽  
pp. 187-196
Author(s):  
Yu-Jung Tseng ◽  
Webber Wei-Po Lai ◽  
Hsin-hsin Tung ◽  
Angela Yu-Chen Lin

The woodchip column reactor has sorption and biodegradation ability for removing emerging contaminant from artificial stormwater under various conditions (woodchip type, operation time, season and flow rate).


Sign in / Sign up

Export Citation Format

Share Document