scholarly journals COLON SPECIFIC DELIVERY OF COMBINATION OF 5-FLUOROURACIL AND CELECOXIB: PREPARATION, CHARACTERIZATION, AND IN VITRO CYTOTOXICITY ASSAY

Author(s):  
VIKAS BANSAL ◽  
ANJOO KAMBOJ ◽  
JITENDER MADAN

Objective: 5-Fluorouracil (5-FU) and celecoxib (Cel) combination offered additive effect in the treatment of colon cancer. However, physicochemical and biopharmaceutical attributes of both drugs deliver suboptimal concentration at the site of action. The objective of the current study is the development of a microparticulate drug delivery system loaded with a combination of 5-FU and Cel to achieve prolonged drug delivery in colon cancer. Methods: 5-FU and Cel combination were loaded in Eudragit coated chitosan (CH) microspheres (MSs) and characterized. Results: The average particle size of the MSs was in the range of 2.7±0.9μm to 4.8±1.1μm. A substantial drug encapsulation efficiency of 71.30±2.3% as obtained for 5-FU as compared to 35.20±1.9% of Cel in the tailored microparticles. The drug loading capacity of 6.5 mg/10 mg and 2.3 mg/10 mg was obtained for 5-FU and Cel, respectively. By Eudragit S 100 (Ed) coating, significant pH-dependent release profile was achieved, and no drug release was observed in simulated gastric and intestinal fluids. The developed MSs exhibited the release of 92.1±2.9% of 5-FU in 8h whereas 18.9±0.7% Cel was found to be released from the developed MSs. The drug-loaded MSs exhibited appreciable potency against HT-29 cells with an IC50 value of 35.9 μM. Conclusion: The results indicated that these microparticles are a promising vehicle for selectively targeting drugs to the colon in the chemotherapy of colon cancer.

2021 ◽  
Author(s):  
Faten Eshrati Yeganeh ◽  
Amir Eshrati Yeganeh ◽  
Bahareh Farasati Far ◽  
Iman Akbarzadeh ◽  
Sameer Quazi ◽  
...  

Abstract An innovative and customized drug delivery system for in vitro cancer treatment has been developed successfully by a simple one-step method. A CoFe2O4@Methionine core-shell nanoparticle was prepared by the reflux assay, in which amino acid on the surface makes the ferrite biocompatible, enhances the chemical stability of the compound, and increases the drug loading capacity. The synthesized nanoparticles were evaluated using SEM, TEM, FTIR, and VSM, while XRD and TGA analysis verified the presence of a coating amino acid on the surface of CoFe2O4. The appearance of a new peak for C≡N in the FTIR spectrum validates the synthesis of a letrozole-loaded carrier. Both uncoated CoFe2O4 and methionine-coated CoFe2O4 nanoparticles behave super-paramagnetically at room temperature, with saturation values of 46 emu/g and 16.8 emu/g, respectively. SEM and TEM were used to characterize the morphology and size of samples, revealing that the average particle size was around 28–29 nm. The loading of Letrozole and the effect of pH (5, 7.4) on the release behavior of the carrier were studied. The result of the drug release in pH (5) was about 88% higher than pH (7.4). Also, the preparation has been evaluated for determining its cytotoxicity using MCF-7, MDA-MB-231, and MCF10A cell lines as an in vitro model, and the results of in vitro experiments showed that CoFe2O4@Methionine could significantly reduce cancer in the cell model. These results demonstrate that core-shell nanoparticles were prepared that are biocompatible and have potential use as drug delivery.


2020 ◽  
Vol 27 (22) ◽  
pp. 3623-3656 ◽  
Author(s):  
Bruno Fonseca-Santos ◽  
Patrícia Bento Silva ◽  
Roberta Balansin Rigon ◽  
Mariana Rillo Sato ◽  
Marlus Chorilli

Colloidal carriers diverge depending on their composition, ability to incorporate drugs and applicability, but the common feature is the small average particle size. Among the carriers with the potential nanostructured drug delivery application there are SLN and NLC. These nanostructured systems consist of complex lipids and highly purified mixtures of glycerides having varying particle size. Also, these systems have shown physical stability, protection capacity of unstable drugs, release control ability, excellent tolerability, possibility of vectorization, and no reported production problems related to large-scale. Several production procedures can be applied to achieve high association efficiency between the bioactive and the carrier, depending on the physicochemical properties of both, as well as on the production procedure applied. The whole set of unique advantages such as enhanced drug loading capacity, prevention of drug expulsion, leads to more flexibility for modulation of drug release and makes Lipid-based nanocarriers (LNCs) versatile delivery system for various routes of administration. The route of administration has a significant impact on the therapeutic outcome of a drug. Thus, the non-invasive routes, which were of minor importance as parts of drug delivery in the past, have assumed added importance drugs, proteins, peptides and biopharmaceuticals drug delivery and these include nasal, buccal, vaginal and transdermal routes. The objective of this paper is to present the state of the art concerning the application of the lipid nanocarriers designated for non-invasive routes of administration. In this manner, this review presents an innovative technological platform to develop nanostructured delivery systems with great versatility of application in non-invasive routes of administration and targeting drug release.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 808
Author(s):  
Ahmed Al Saqr ◽  
El-Sayed Khafagy ◽  
Ahmed Alalaiwe ◽  
Mohammed F. Aldawsari ◽  
Saad M. Alshahrani ◽  
...  

Green synthesis of gold nanoparticles (GNPs) with plant extracts has gained considerable interest in the field of biomedicine. Recently, the bioreduction nature of herbal extracts has helped to synthesize spherical GNPs of different potential from gold salt. In this study, a fast ecofriendly method was adopted for the synthesis of GNPs using fresh peel (aqueous) extracts of Benincasa hispida, which acted as reducing and stabilizing agents. The biosynthesized GNPs were characterized by UV–VIS and Fourier transform infrared spectroscopy, transmission electron microscopy (TEM), and dynamic light scattering. In addition, the in vitro antibacterial and anticancer activities of synthesized GNPs were investigated. The formation of gold nanoparticles was confirmed by the existence of a sharp absorption peak at 520 nm, corresponding to the surface plasmon resonance (SPR) band of the GNPs. TEM analysis revealed that the prepared GNPs were spherical in shape and had an average particle size of 22.18 ± 2 nm. Most importantly, the synthesized GNPs exhibited considerable antibacterial activity against different Gram-positive and Gram-negative bacteria. Furthermore, the biosynthesized GNPs exerted remarkable in vitro cytotoxicity against human cervical cancer cell line, while sparing normal human primary osteoblast cells. Such cytotoxic effect was attributed to the increased production of reactive oxygen species (ROS) that contributed to the damage of HeLa cells. Collectively, peel extracts of B. hispida can be efficiently used for the synthesis of GNPs, which can be adopted as a natural source of antimicrobial and anticancer agent.


2017 ◽  
Vol 6 (6) ◽  
pp. 517-526 ◽  
Author(s):  
Permender Rathee ◽  
Anjoo Kamboj ◽  
Shabir Sidhu

AbstractBackground:Piperine helps in the improvement of bioavailability through pharmacokinetic interaction by modulating metabolism when administered with other drugs. Nisoldipine is a substrate for cytochrome P4503A4 enzymes. The study was undertaken to assess the influence of piperine on the pharmacokinetics and pharmacodynamics of nisoldipine nanoparticles in rats.Methods:Optimization studies of nanoparticles were performed using Taguchi L9 orthogonal array, and the nanoparticles were formulated by the precipitation method. The influence of piperine and nanoparticles was evaluated by means of in vivo kinetic and dynamic studies by oral administration in rats.Results:The entrapment efficiency, drug loading, ζ potential, and average particle size of optimized nisoldipine-piperine nanoparticles was 89.77±1.06%, 13.6±0.56%, −26.5 mV, and 132±7.21 nm, respectively. The in vitro release in 0.1 n HCl and 6.8 pH phosphate buffer was 96.9±0.48% and 98.3±0.26%, respectively. Pharmacokinetic studies showed a 4.9-fold increase in oral bioavailability and a >28.376±1.32% reduction in systemic blood pressure by using nanoparticles as compared to control (nisoldipine suspension) in Wistar rats.Conclusion:The results revealed that piperine being an inhibitor of cytochrome P4503A4 enzymes enhanced the bioavailability of nisoldipine by 4.9-fold in nanoparticles.


Author(s):  
Sumit Kumar ◽  
Dinesh Chandra Bhatt

Fabrication and evaluation of the Isoniazid loaded sodium alginate nanoparticles (NPs) was main objective of current investigation. These NPs were engineered using ionotropic gelation technique. The NPs fabricated, were evaluated for average particle size, encapsulation efficiency, drug loading, and FTIR spectroscopy along with in vitro drug release. The particle size, drug loading and encapsulation efficiency of fabricated nanoparticles were ranging from 230.7 to 532.1 nm, 5.88% to 11.37% and 30.29% to 59.70% respectively. Amongst all batches studied formulation F-8 showed the best sustained release of drug at the end of 24 hours.


INDIAN DRUGS ◽  
2020 ◽  
Vol 57 (08) ◽  
pp. 61-69
Author(s):  
D. S Randive ◽  
K. P. Shejawal ◽  
S. D Bhinge ◽  
M. A Bhutkar ◽  
P. D. Patil ◽  
...  

The aim of the present research was to perform green synthesis of gold nanoparticles of isolated citrus bioflavonoid from Citrus sinensis (orange) peel extract and to evaluate its anticancer potential. Methanolic extract of orange peel was obtained by Soxhlet extraction and citrus bioflavonoid was isolated by using column chromatography. Gold nanoparticles were developed by green synthesis method, wherein 1 % aqueous solution of isolated citrus bioflavonoid were mixed with 1% solution of HAuCl4 and incubated at ambient temperature for 4 to 5 hours and observed for the color change which indicated formation of nanoparticles. Obtained gold nanoparticles were evaluated by UV visible spectra, FTIR, SEM, XRD analysis and for antimicrobial potential against E coli, S.aureus and P. aeruginosa. Cytotoxicity study was carried out by using in vitro assays, namely MTT, SRB and Tryphan blue assay, against colon cancer cell line Colo 320 DM, and HT 29. results of SEM showed that nanosized particles in the range of 80-100nm were formed. Results of cytotoxicity studies revealed that CBFGNP exhibited 72.28% inhibition, against Colo320 DM whereas pure CBF showed 70.46% inhibition. Against HT 29, CBFGNP exhibited 69.79% inhibition, whereas for MTT assay and SRB assay, CBFGNP showed 80.15% and 58.29% inhibition, respectively. Moreover, CBFGNP exhibited 90.29% and 85% non viability against Colo320 DM and HT29. Based on the results, it can be concluded that gold nanoparticles of citrus bioflavonoid (CBFGNP) exhibits more cytotoxicity against Colo320 DM and HT29 as compared to pure citrus bioflavonoid when assessed by three different in vitro cytotoxicity assays.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Fatemeh Abedi ◽  
Soodabeh Davaran ◽  
Malak Hekmati ◽  
Abolfazl Akbarzadeh ◽  
Behzad Baradaran ◽  
...  

AbstractThe combination therapy which has been proposed as the strategy for the cancer treatment could achieve a synergistic effect for cancer therapies and reduce the dosage of the applied drugs. On account of the the unique properties as the high absorbed water content, biocompatibility, and flexibility, the targeting nanogels have been considred as a suitable platform. Herein, a non-toxic pH/thermo-responsive hydrogel P(NIPAAm-co-DMAEMA) was synthesized and characterized through the free-radical polymerization and expanded upon an easy process for the preparation of the smart responsive nanogels; that is, the nanogels were used for the efficient and controlled delivery of the anti-cancer drug doxorubicin (DOX) and chemosensitizer curcumin (CUR) simultaneously like a promising strategy for the cancer treatment. The size of the nanogels, which were made, was about 70 nm which is relatively optimal for the enhanced permeability and retention (EPR) effects. The DOX and CUR co-loaded nanocarriers were prepared by the high encapsulation efficiency (EE). It is important to mention that the controlled drug release behavior of the nanocarriers was also investigated. An enhanced ability of DOX and CUR-loaded nanoformulation to induce the cell apoptosis in the HT-29 colon cancer cells which represented the greater antitumor efficacy than the single-drug formulations or free drugs was resulted through the In vitro cytotoxicity. Overall, according to the data, the simultaneous delivery of the dual drugs through the fabricated nanogels could synergistically potentiate the antitumor effects on the colon cancer (CC).


2021 ◽  
Vol 21 (2) ◽  
pp. 977-986
Author(s):  
Zhongxing Shi ◽  
Jinping Li ◽  
Hongwei Liang ◽  
Hongbo Hu ◽  
Huijie Jiang

Poly[lactic-co-glycolic] acid (PLGA) targeting nanoparticles AFP/PLGA/Dt386, loaded with Dt386 plasmid of diphtheria toxin gene, modified by Alpha fetoprotein (AFP) monoclonal antibody, is prepared. Its physical and chemical properties and its effect on HepG2 cells are studied. Firstly, Dt386 expression plasmid pET11a/Dt386 is constructed and PLGA nanoparticles are prepared by emulsion solvent evaporation (ESE). Scanning electron microscope (SEM) is used to observe its morphology. Laser Particle Sizer is used to measure the particle size. In addition, the encapsulation efficiency, drug loading and in vitro release rate of PLGA nanoparticles are measured. Carboxy fluorescein and rhodamine fluorescein are used to double label IgG/PLGA/Dt386 and AFP/PLGA/Dt386 nanospheres, respectively, the entry of nanospheres into HepG2 cells are observed at 3 h and 12 h. The effect of AFP/PLGA/Dt386 nanospheres on the migration of HepG2 cells is examined by wounding healing assay. Transwell chamber experiment is used to detect the effect of AFP/PLGA/Dt386 nanospheres on the invasion of HepG2 cells. MTT method is utilized to determine the inhibitory activity of nanoparticles on HepG2 cell proliferation. After treated with IgG/PLGA/Dt386 and AFP/PLGA/Dt386 nanoparticles for 48 hours, flow cytometry is used to detect the apoptosis rate and cell cycle of HepG2 cells in each group. The results show that the prepared nanospheres have regular morphology, flat surface, average particle size of 265.72±12.46 nm, zeta potential of −18.15 mV. The average entrapment efficiency and drug loading are 78.48±1.71% and 3.16±0.35%, respectively. The nanoparticles release slowly and stably in vitro. At the 10th day, the release rate reaches 75.13%. PLGA nanospheres can effectively protect DNA from nuclease degradation. The results show that AFP/PLGA/Dt386 nanospheres have biological targeting effect and can be enriched in cells. AFP/PLGA/Dt386 nanoparticles can significantly inhibit the migration, invasion and proliferation of HepG2 cells, and promote apoptosis.


Nanomaterials ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 1028 ◽  
Author(s):  
Mira Nadiah Mohd Izham ◽  
Yazmin Hussin ◽  
Muhammad Nazirul Mubin Aziz ◽  
Swee Keong Yeap ◽  
Heshu Sulaiman Rahman ◽  
...  

Citral is an active compound naturally found in lemongrass, lemon, and lime. Although this pale-yellow liquid confers low water solubility, the compound has been reported to possess good therapeutic features including antiproliferative and anticancer modalities. The self nano-emulsifying drug delivery system (SNEDDS) is a type of liquid-lipid nanocarrier that is suitable for the loading of insolubilized oil-based compound such as Citral. This study reports the design and optimization of a SNEDDS formulation, synthesis and characterization as well as loading with Citral (CIT-SNEDDS). Further assessment of theantiproliferative effects of CIT-SNEDDS towards colorectal cancer cells was also conducted. SNEDDS composed of coconut oil, dimethyl sulfoxide (DMSO) and Tween 80. CIT-SNEDDS was prepared via gentle agitation of SNEDDS with 0.5% Citral for 72 h at room temperature. Physicochemical characterization was performed using several physicochemical analyses. The average particle size of CIT-SNEDDS was16.86 ± 0.15 nm, zeta potential of 0.58 ± 0.19 mV, and polydispersity index (PDI) of 0.23 ± 0.01. In vitro drug release of Citral from CIT-SNEDDS was 79.25% of release, and for Citral the release percentage was 93.56% over 72 h. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was done to determine the cytotoxicity effect of CIT-SNEDDS in human colorectal cancer cell lines HT29 and SW620. The half maximal inhibitory concentrations (IC50) for 72 hof CIT-SNEDDS and Citral on SW620 were 16.50 ± 0.87 µg/mL and 22.50 ± 2.50 µg/mL, respectively. The IC50 values of CIT-SNEDDS and Citral after 72 h of treatment on HT29 were 34.10 ± 0.30 µg/mL and 21.77 ± 0.23 µg/mL, respectively. This study strongly suggests that CIT-SNEDDS has permitted the sustained release of Citral and that CIT-SNEDDS constitutes a potential soluble drug nanocarrier that is effective against colorectal cancer cells.


Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 316 ◽  
Author(s):  
Guangyan Zhang ◽  
Xulin Jiang

The temperature responsive PEGylated polyaspartamide derivative, denoted as mPEG-PAAHP, was synthesized by the click reaction. FTIR and 1H NMR were adopted to characterize and confirm the chemical structures of the obtained mPEG-PAAHPs. The temperature responsive behavior investigated by transmittance and dynamic light scattering showed that some of the obtained mPEG-PAAHPs exhibited obvious temperature responsiveness and could be used to prepare nanoparticles by quickly heating. Drug paclitaxel can be encapsulated into mPEG-PAAHP based nanoparticles with a high encapsulation efficiency up to 99% (corresponding to a drug loading content of around 9.9%). Dynamic light scattering results showed that the PTX-loaded nanoparticles had a mean size around 80 nm (PDI<0.2) and good stability in PBS with 150 mM ionic strength. In vitro cytotoxicity results showed that mPEG-PAAHP did not show any toxicity to HeLa cells, but the PTX-loaded nanoparticles based on mPEG-PAAHP exhibited obvious anti-cancer activity. Thus, the temperature responsive PEGylated polyaspartamide derivative mPEG-PAAHP may be a promising drug delivery system.


Sign in / Sign up

Export Citation Format

Share Document