scholarly journals ANTIBACTERIAL ACTIVITY FOR BIOSURFACTANT PRODUCED BY STREPTOMYCES SPP. ISOLATED FROM SOIL SAMPLES

Author(s):  
SAMER M. AL-HULU

Objective: The goal of the present study on isolation Streptomyces from soil samples with biosurfactant activity and antibacterial activity analysis. Methods: (25) The soil samples were taken form Hilla city. (10) It is Streptomyces spp. They were identified. (4) Streptomyces spp. having the ability to hemolysis on blood agar that has the capacity to generate biosurfactants. Streptomyces spp. 8 displayed a high degree of activity by having a blood agar inhibition zone (25 mm). Results: Antibacterial activity was evaluated for Streptomyces spp. 8 (Staphylococcus aureus, Escherichia Coli, and Pseudomonas aeruginosa). Streptomyces spp. 8 has greatest inhibition zone against S. aureus equal to 14 mm compared 12 mm against E. coli and 8 mm for P. aeruginosa. This Streptomyces spp. 8 characteristic was tested, it showed Gram positive with aerial mycelium gray in color on yeast malt extract agar. Negative for melanin produced on tyrosine broth medium, negative for H2S output, and pigment development, it has for the use of mannitol sucrose, glucose, and fructose as carbon source and negative for xylose. Conclusion: Isolated Streptomyces spp. having the potential to generate biosurfactants with antibacterial activity.

2020 ◽  
Vol 11 (4) ◽  
pp. 5042-5046
Author(s):  
Samer M. Al-Hulu

Twenty-five soil samples were collected from Hilla city. (10) Actinomyctes isolates were isolated. Five Streptomyces spp. Late was diagnosed. Isolates positive for a gram and having grey Aerial Mycelium and yellow-green Substrate mycelium on yeast-malt extract medium. All Streptomyces spp. olates d for nanoparticles production. Streptomyces spp.2 was able for producing of omyces spp.2 was, grey aerial, yellow-green substrate mycelium, unable for in producing, having the ability for using glucose, sucrose, mannitol, negative for fructose and mannose, negative for indole, and vogas Proskauer, positive for methyl red test and citrate utilization, negative for catalase and urea test. UV spectrum for ZnO particles showed maximum absorption at 418 nm. FT-IR spectrum for ZnO nanoparticles represented absorption peak at 3425.58 cm-1 is O-H group, 2360.87 cm-1 is CΞC , 1678.07 cm-1 is C=O group, 1388.75 cm-1 is C-H group,1089,78 cm-1 is C-O bending, 1006.84 cm-1 is C-O stretching,615.36 cm-1 is C-H, and 545.86 cm-1 is C-cl stretching. SEM shows the ability of Streptomyces spp.2 for spherical ZnO nanoparticles synthesizing with size (78.96) nm. Streptomyces spp.2 ZnO nanoparticles were having a great effect on E.coli, with inhibition zone (20 mm) and (15,18) mm against S.aureus, Klebsiella pneumonia.


2021 ◽  
Vol 26 (1) ◽  
pp. 8-15
Author(s):  
Shiv Nandan Sah ◽  
Ramesh Majhi ◽  
Sunil Regmi ◽  
Arjun Ghimire ◽  
Bhageshwor Biswas ◽  
...  

Realizing an increasing need for a novel antibiotic, this study was carried out to screen antibacterial metabolites producing actinomycetes from 15 soil samples collected from Taplejung. Antibacterial metabolites producing actinomycetes were confirmed by primary screening and secondary screening. Macroscopic, microscopic, and biochemical characteristics were used for presumptive identification of probable actinomycetes genera. The potential isolate was cultured in starch casein broth for production of possible antibacterial compound. The antibacterial compound was extracted from fermented broth using organic solvents like ethyl acetate, n-butanol, chloroform, dichloromethane, and methanol. Among 24 isolates, only one (T18) showed antibacterial activity against both Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative (Escherichia coli, Salmonella Typhi and Pseudomonas aeruginosa) test-bacteria. The isolate was considered as Streptomyces spp based on microscopy and various biochemical, and physiological characteristics. Extracted antibacterial metabolite showed antibacterial activity with a MIC value of 1.2 mg/mL against E. coli (ATCC 25922). The chromatogram in Thin Layer Chromatography showed only one spot exhibited by extract with Rf value 0.87 suggested that the isolate produced a compound that was completely different from the spot with Rf value 0.94 produced by gentamicin (standard). This study revealed the distribution of the potent antibacterial metabolite producing actinomycetes in the soils of Taplejung.


2020 ◽  
Vol 11 (2) ◽  
pp. 35-41
Author(s):  
Callixte Yadufashije ◽  
Adolyne Niyonkuru ◽  
Emanuel Munyeshyaka ◽  
Sibomana Madjidi ◽  
Joseph Mucumbitsi

Background: Ginger (Zingiber officinale) has been used for long time due to its potential antimicrobial activity against diversity of microbial pathogens. Aims and Objectives: The study was carried out to investigate the bacteria pathogens found in digestive tract infections and assess antimicrobial activities of ginger extract to identified bacteria. Materials and Methods: Bacteriological studies were carried out on stool samples from 30 patients attending Muhoza health center. Different types of bacteria were isolated from stool samples of digestive tract infection patients by using various methods such culture, biochemical test and antimicrobial activity of ginger extracts was analyzed at INES-Ruhengeri in clinical microbiology laboratory. Results: Study findings showed isolated bacteria and antibacterial activity of Ginger. Isolated bacteria and their percentages including Escherichia coli (46.6%) which is the predominant isolated bacteria, Salmonella species (33.33%), Enterobacter spp (10.0%), Shigella spp (6.6%) and Citrobacter (3.33%) which is the least isolated bacteria. Antibacterial activity of ginger was seen on isolated bacteria, as ethanol and methanol were used for ginger oil extraction, the antibacterial activity of ginger extracts using ethanol was seen on isolated bacteria such us Citrobacter spp with 14 mm of inhibition zone, Shigella spp with 12 mm, Salmonella with 11.1 mm, E. coli with 9.5 mm and Enterobacter spp which was seen to be resistant to ginger extract using ethanol with 0.66mm of inhibition zone. For methanol extracts antibacterial activity was seen as follows: Citrobacter spp at 12 mm, Shigella spp at 11 mm, E. coli at 8 mm, salmonella spp at 6.1 mm, and Enterobacter spp with 5 mm. Enterobacter spp was seen to be the most resistant bacteria in both extracts. Conclusion: Ginger has shown to have an antibacterial activity on bacteria isolated from digestive tract infected patients. It can be used as a medicine to treat these infections. Number of researches should be done to be sure on this reality of antibacterial activity of ginger.


2021 ◽  
Vol 869 (1) ◽  
pp. 012033
Author(s):  
D R Utami ◽  
I Irwan ◽  
S Agustina ◽  
S Karina ◽  
S Afriani

Abstract Squid is one of the export commodities in Indonesia. In general, the use of squid meat, while the ink is only as waste. In fact, Squid ink contain bioactive compound that potential as anti-inflammatory, antihypertensive, anti-diabetic,anti-microbial and anti-malaria agents. The purpose of the study is to determine the types of secondary metabolite compounds contained in n-hexane extract of Loligo sp. ink using maceration method to determine its antibacterial activity against Escherichia coli. The results of secondary metabolite compounds obtained from the n-hexane extract of Loligo sp. ink are alkaloid, saponins, glycosides and phenol. The results of antibacterial test against E. coli using the disc method obtained the average of inhibition zone diameter at the concentration of 4% is 6.3 mm (intermediate), concentration of 8% is 7.83 mm (intermediate), concentration of 16% is 14.5 mm (susceptible) and concentration of 32% is 10.83 mm (intermediate). The antibacterial activity in n-hexane extract of Loligo sp. ink is optimal at the concentration of 16% against E. coli bacteria.


2020 ◽  
Vol 8 (2) ◽  
pp. 61
Author(s):  
Tessalonica Dajoh ◽  
Robert A Bara ◽  
Esther Angkouw ◽  
Medy Ompi ◽  
Rosita A Lintang ◽  
...  

Phyllidiella nigra is an organism that is suspected to have secondary metabolites because their ability to develop its self defense system by camouflage and using chemical compounds derived from their nature diet as deterrent against their predators. The purpose of this study was to isolate symbiotic bacterial derived from P. nigra, extracted and followed by, the antibacterial assays against Escherichia coli and Bacillus megaterium as well as the anti-UV assay. The results showed that the five isolates tested had an antibacterial activity with the highest average inhibition zone against E. coli DSM 498 bacteria, isolate 1 (14.67 mm), isolate 5 (14 mm), and against B. Megaterium DSM 32T bacteria, isolate 3 (13.33 mm). The three isolates which had the highest inhibition zone and P. nigra extract were tested for anti-UV assay using a UV-Vis Spectrophotometer. The results obtained isolate 3 has absorption of UV-A with the UV absorbtion maximum at λ 340 nm and P. nigra extract has absorption on UV-B radiation with UV absorption maximum at λ 290 nm. Key words: Nudibranchia, Bacteria, Anti-bacteial, Anti-UV Phyllidiella nigra merupakan organisme yang diduga memiliki metabolit sekunder karena mampu mengembangkan sistem pertahanan dirinya dengan cara kamuflase dan menggunakan senyawa kimia sebagai racun yang didapat dari makanannya. Tujuan dari penelitian ini yaitu mendapatkan isolat bakteri yang bersimbiosis dengan P. nigra, mendapatkan ekstrak dari baktri simbion, dan menguji antibakteri dan anti-UV ekstrak etil aseta bakteri simbion dengan metode difusi agar terhadap bakteri Escherichia coli dan Bacillus megaterium. Hasil penelitian didapatkan kelima isolat yang diuji memiliki aktivitas antibakteri dengan rerata zona hambat tertinggi terhadap bakteri E. coli DSM 498 yaitu isolat 1 (14,67 mm), isolat 5 (14 mm), dan terhadap baktri B. megaterium DSM 32T yaitu isolat 3 (13,33 mm). Ketiga isolat yang memiliki zona hambat tertinggi dan ekstrak P. nigra diujikan anti-UV menggunakan alat UV-Vis Spektrofotometer. Hasil yang didapat isolat 3 memiliki serapan terhadap radiasi sinar UV-A dengan puncak tertinggi pada λ 340 nm dan ekstrak P. nigra memiliki serapan terhadap radiasi sinar UV-B dengan puncak tertinggi berada pada λ 290 nm. Kata kunci: Nudibranchia, Bacteria, Anti-bacteial, Anti-UV


Author(s):  
Jansen Silalahi ◽  
Petrika Situmorang ◽  
Popi Patilaya ◽  
Yosy Ce Silalahi

ABSTRACTObjective: The purpose of this study was to evaluate the antibacterial activity of chitosan, hydrolyzed coconut oil and their combination againstBacillus cereus and Escherichia coli.Methods: The materials used in this study were powder of chitosan (obtained from prawn shell produced by Laboratory of Research Centre FMIPAUniversity of Sumatera Utara) and virgin coconut oil (VCO) product of Siti Nurbaya-Indonesia. VCO was partially hydrolyzed by Lipozyme TL IM(active at sn-1,3 position) and the result called hydrolyzed virgin coconut oil (HVCO). The bacteria used in this study were B. cereus and E. coli. Theantibacterial activity of chitosan in 1% acetic acid and HVCO in dimethylsulfoxide was tested by Kirby–Bauer agar diffusion method using paper discwith diameter of 6 mm.Results: The results showed that the minimum inhibitory concentration of chitosan against B. cereus and E. coli is at concentration of 0.05% withinhibition zone diameter of 6.86 mm and 7.56 mm, respectively. MIC of HVCO against B. cereus is at concentration of 0.25% with inhibition zonediameter of 6.40 mm, and against E. coli is at a concentration of 0.50% with inhibition zone diameter of 6.20 mm. The inhibition zone diameter ofchitosan 0.05% and HVCO 0.25% in combination against B. cereus is 8.33 mm which is higher than half the sum of chitosan 0.05% and HVCO 0.25%(6.63 mm). The inhibition zone diameter of chitosan 0.05% and 0.5% HVCO in combination against E. coli is 8.53 mm which is higher than half thesum of chitosan 0.05% and HVCO 0.5% (6.53 mm).Conclusion: The findings of this study indicate that chitosan is more antibacterial than HVCO, and the interaction between chitosan and HVCO incombination demonstrated to be synergistic against B. cereus and E. coli.Keywords: Antibacterial, Chitosan, Coconut oil, Combination, Bacillus cereus, Escherichia coli.®


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1039 ◽  
Author(s):  
Nanxi Zhang ◽  
Hui Cao

To enhance the antibacterial activity of natural rubber latex foam (NRLF), chitin was added during the foaming process in amounts of 1–5 phr (per hundred rubber) to prepare an environmentally friendly antibacterial NRLF composite. In this research, NRLF was synthesized by the Dunlop method. The swelling, density, hardness, tensile strength, elongation at break, compressive strength and antibacterial activity of the NRLFs were characterized. FTIR and microscopy were used to evaluate the chemical composition and microstructure of the NRLFs. The mechanical properties and antibacterial activity of the NRLF composites were tested and compared with those of pure NRLF. The antibacterial activity was observed by the inhibition zone against E. coli. NRLF composite samples were embedded in a medium before solidification. The experimental results of the inhibition zone indicated that with increasing chitin content, the antibacterial activity of the NRLF composites increased. When the chitin content reached 5 phr, the NRLF composite formed a large and clear inhibition zone in the culture dish. Moreover, the NRLF–5 phr chitin composite improved the antibacterial activity to 281.3% of that of pure NRLF against E. coli.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
María A. León-Calvijo ◽  
Aura L. Leal-Castro ◽  
Giovanni A. Almanzar-Reina ◽  
Jaiver E. Rosas-Pérez ◽  
Javier E. García-Castañeda ◽  
...  

Peptides derived from human and bovine lactoferricin were designed, synthesized, purified, and characterized using RP-HPLC and MALDI-TOF-MS. Specific changes in the sequences were designed as (i) the incorporation of unnatural amino acids in the sequence, the (ii) reduction or (iii) elongation of the peptide chain length, and (iv) synthesis of molecules with different number of branches containing the same sequence. For each peptide, the antibacterial activity againstEscherichia coliATCC 25922 andEnterococcus faecalisATCC 29212 was evaluated. Our results showed that Peptides I.2 (RWQWRWQWR) and I.4 ((RRWQWR)4K2Ahx2C2) exhibit bigger or similar activity againstE. coli(MIC 4–33 μM) andE. faecalis(MIC 10–33 μM) when they were compared with lactoferricin protein (LF) and some of its derivate peptides as II.1 (FKCRRWQWRMKKLGA) and IV.1 (FKCRRWQWRMKKLGAPSITCVRRAE). It should be pointed out that Peptides I.2 and I.4, containing the RWQWR motif, are short and easy to synthesize; our results demonstrate that it is possible to design and obtain synthetic peptides that exhibit enhanced antibacterial activity using a methodology that is fast and low-cost and that allows obtaining products with a high degree of purity and high yield.


Jurnal MIPA ◽  
2014 ◽  
Vol 3 (2) ◽  
pp. 129
Author(s):  
Megawati S. Saroinsong ◽  
Febby E. F. Kandou ◽  
Adelfia Papu ◽  
Marina F. O. Singkoh

Penelitian ini bertujuan untuk menguji daya hambat dari ekstrak metanol beberapa jenis porifera terhadap pertumbuhan bakteri E. coli dan S. aureus. Pengujian aktivitas antibakteri menggunakan metode Kirby-Bauer, yaitu dilakukan dengan mengukur zona hambat di sekeliling cakram kertas. Ekstrak Haliclona sp dapat menghambat pertumbuhan S. aureus pada konsentrasi ekstrak 30%, 60% dan 90% dengan hasil pengukuran diameter zona hambat 13.50 mm, 20.67 mm dan 27.33 mm; serta menghambat pertumbuhan E. coli dengan diameter zona hambat 10.08 mm, 12.83 mm dan 14.17 mm. Daya hambat ekstrak Agelas sp terhadap S. aureus menunjukkan diameter zona hambat 8.33 mm dan hanya menunjukkan pada konsentrasi ekstrak 90%, sementara daya hambat ekstrak Agelas sp pada konsentrasi 30%, 60% dan 90% terhadap E. coli menunjukkan diameter zona hambat sebesar 7.67 mm, 10.17 mm dan 14.17 mm. Daya hambat Spheciospongia sp terhadap S. aureus dan E. coli hanya terlihat pada konsentrasi ekstrak sebesar 90% dengan diameter zona hambat adalah 8.42 mm dan 8.75 mm. Berdasarkan hasil yang diperoleh, dapat disimpulkan bahwa ekstrak Haliclona sp memiliki potensi aktivitas antibakteri yang dapat digunakan sebagai bahan dasar pembuatan obat antibiotik.This research aimed to test the inhibition capabilities of methanol extract from several kinds of Porifera on Escherichia coli and Staphylococcus aureus growth. The antibacterial activity test using the Kirby-Bauer method, which delivered by measuring the inhibition zone around paper disc. The extract of Haliclona sp can inhibit the S. aureus growth at 30%, 60% and 90% of extracts concentration with the measurement of inhibition zone diameters are 13.50 mm, 20.67 mm and 27.33 mm; also inhibit the E. coli growth with inhibition zone diameters are 10.08 mm, 12.83 mm and 14.17 mm. The inhibition capability of Agelas sp extract on S. aureus shows that the inhibition zone diameters is 8.83 mm and only appear at 90% of extracts concentration, meanwhile the inhibition capability of Agelas sp extract at concentration 30%, 60% and 90% on E. coli shows diameters of inhibition zone are 7.67 mm, 10.17 mm and 14.17 mm. The inhibition capability of Spheciospongia sp on S. aureus and E. coli only occurred at 90% of extracts concentration with inhibition zone diameters 8.42 mm and 8.75 mm. Based on the results, it can be assumed that extracts of Haliclona sp has a potential antibacterial activity that can be used as a basic ingredients for antibiotic medicine.


2021 ◽  
Vol 948 (1) ◽  
pp. 012069
Author(s):  
R Trifani ◽  
Noverita ◽  
T A Hadi ◽  
E Sinaga

Abstract Endosymbiont fungi from marine sponges are a rich source of medicinally active compounds. Indonesia has a huge number of marine sponges. This research was conducted to determine the antibacterial potential of endosymbiont fungi isolated from marine sponges collected from Kotok Kecil Island, Seribu Islands. The screening was conducted with two methods, the modified GIBEX and disc diffusion. Species of marine sponges were isolated, namely Petrosia sp., Stylissa carteri, Cinachyrella australiensis, Callyspongia sp., Petrosia nigrians, and Stylissa massa, and obtained 9 isolates of endosymbiont fungi. The GIBEX test against Escherichia coli and Streptococcus mutans showed that ethyl acetate extract had strongest antibacterial activity. Disc diffusion test of ethyl acetate extract, five isolates had antibacterial activity against S. mutans and four against E. coli. The isolate that showed the strongest antibacterial activity was from Petrosia sp. Which has an inhibition zone of 8.4 mm against E. coli and 7.45 mm against S. mutans. The main active compounds from the isolate of Petrosia sp. are butylhydroxytoluene and phthalic acid di-(2-propylpentyl) esters. Based on this study, we concluded that the endosymbiont fungi of marine sponges are potential to be developed for further development as source of antibacterial agents.


Sign in / Sign up

Export Citation Format

Share Document