scholarly journals FORMULATION AND EVALUATION OF PRESS COATED TABLETS OF LANSOPRAZOLE

Author(s):  
Prasanthi D ◽  
PRASHANTI. S ◽  
MEGHANA G

Objective: Lansoprazole an proton pump inhibitor, degrades in acidic environment, hence protection of drug is done by coating the drug with enteric coating polymers. The aim and objective of the present study was to prepare enteric coated delayed release tablets of lansoprazole by using press coating technique. Methods: Core tablets were prepared by direct compression and evaluated for their physico-chemical properties. Press coated tablets were formulated by using different combinations of ethyl cellulose, HPMC E15 and HPMC K4M as a coating layer. Core and coated tablets were optimized by dissolution studies. Fourier transform infra-red spectroscopy (FTIR) and differential scanning calorimetry (DSC) studies were performed to know the compatibility of drug with various excipients. Surface morphology and uniformity of coat was evaluated by Scanning electron microscopy (SEM). Stability of optimized formulation was evaluated according to ICH guidelines. Results: Among the various formulations F5 containing ethyl cellulose: HPMC E15 (10:90) and F9 containing ethyl cellulose: HPMC K4M (25:75) were optimized based on the better drug release within 8 h. DSC studies and FTIR studies revealed compatibility of drug with excipients. Obtained SEM photographs of tablets showed that the surface of core tablet is uniformly coated with coat by press coating. Stability studies showed that the formulations were stable. Conclusion: As a result, delayed release press coated tablets developed in this study delivered lansoprazole in the intestine and protected the drug from degradation.

2017 ◽  
Vol 2 (1) ◽  
Author(s):  
M. M. Nasef ◽  
H. Saidi ◽  
A. H. Yahaya

Crosslinked cation exchange membranes bearing sulfonic acid groups (PE-g-PSSA/DVB) were prepared by radiationinduced grafting of styrene/divinylbenzene (DVB) mixtures onto low density polyethylene (PE) films followed by sulfonation reactions. The effect of addition of DVB (2 and 4%) on the grafting behavior and the physico-chemical properties of the membranes such as ion exchange capacity, swelling and ionic conductivity were evaluated incorrelation with grafting yield (Y%). The structural and thermal properties of the membranes were also studied using differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA), respectively. Crosslinking with DVB was found to considerably affect the properties of the membranes in a way that reduces the swelling properties and enhances the chemical stability. The ion conductivity of the crosslinked membranes recorded a level of 10–2 S/cm at sufficient grafting yield (28%) despite the reduction caused by the formation of crosslinking structure. The results of this work suggest that membranes prepared in this study are potential alternatives for various electrochemical applications.


Coatings ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 114 ◽  
Author(s):  
Vincenzo De Leo ◽  
Sante Di Gioia ◽  
Francesco Milano ◽  
Paola Fini ◽  
Roberto Comparelli ◽  
...  

Curcumin is a natural polyphenol with strong antioxidant activity. However, this molecule shows a very poor bioavailability, instability, and rapid metabolism in vivo. In this work curcumin was loaded in Eudragit-coated liposomes to create a gastroresistant carrier, able to protect its load from degradation and free it at the site of absorption in the colon region. Small unilamellar vesicles were prepared and coated with Eudragit by a pH-driven method. The physico-chemical properties of the prepared systems were assessed by light scattering, transmission electron microscopy, infrared spectroscopy, and differential scanning calorimetry. The uptake of vesicles by Caco-2 cells and the anti-oxidant activity in cells were evaluated. The produced vesicles showed dimensions of about forty nanometers that after covering with Eudragit resulted to have micrometric dimensions at acid pH. The experiments showed that at pH > 7.0 the polymeric coating dissolves, releasing the nanometric liposomes and allowing them to enter Caco-2 cells. Delivered curcumin loaded vesicles were then able to decrease significantly ROS levels as induced by H2O2 in Caco-2 cells. The proposed work showed the possibility of realizing effective gastroresistant curcumin liposome formulations for the delivery of antioxidant molecules to Caco-2 cells, potentially applicable to the treatment of pathological conditions related to intestinal oxidative stress.


2021 ◽  
Vol 22 (23) ◽  
pp. 13146
Author(s):  
Hanna Pruchnik ◽  
Anna Gliszczyńska ◽  
Aleksandra Włoch

The aim of this work was the evaluation of the physico-chemical properties of a new type of liposomes that are composed of DPPC and bioconjugates of anisic acid with phosphatidylcholine. In particular, the impact of modified anisic acid phospholipids on the thermotropic parameters of liposomes was determined, which is crucial for using them as potential carriers of active substances in cancer therapies. Their properties were determined using three biophysical methods, namely differential scanning calorimetry (DSC), steady-state fluorimetry and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). Moreover, temperature studies of liposomes composed of DPPC and bioconjugates of anisic acid with phosphatidylcholine provided information about the phase transition, fluidity regarding chain order, hydration and dynamics. The DSC results show that the main phase transition peak for conjugates of anisic acid with phosphatidylcholine molecules was broadened and shifted to a lower temperature in a concentration- and structure-dependent manner. The ATR-FTIR results and the results of measurements conducted using fluorescent probes located at different regions in the lipid bilayer are in line with DSC. The results show that the new bioconjugates with phosphatidylcholine have a significant impact on the physico-chemical properties of a membrane and cause a decrease in the temperature of the main phase transition. The consequence of this is greater fluidity of the lipid bilayer.


2012 ◽  
Vol 9 (1) ◽  
pp. 29
Author(s):  
Normah Ismail ◽  
Nurul Asyiraf Abdul Jabar

Collagen was extracted from catfish (Clarias gariepnus) waste using 0.5M acetic acid and its subsequent precipitation in 2.6M NaCl. The resultant collagen was analysed with respect to its moisture content and physico­chemical properties including yield, pH, protein content, colour, odour and thermal stability. A yield of 16. 4% and positive collagen attributes indicate that catfish waste has potential as a collagen source. The snowy white, crystal-like and light textured collagen comprises of 5.97% protein and 0.46% moisture, and exhibits a pH of 4.75. Sensory evaluation indicates that the collagen has a slight fishy odour. Viscosity analysis indicates a steady decrease with increasing temperature over the range considered (20-50°C). The pale colour exhibited and limited odour emitted by the extracted collagen indicate that catfish waste collagen could be applied in the food industry without resulting in any undesirable food products attributes. Differential Scanning Calorimetry (DSC) analysis indicated that the collagen exhibits good thermal stability and denatures at a high temperature in a similar manner to mammalian collagen.


Clay Minerals ◽  
2016 ◽  
Vol 51 (3) ◽  
pp. 445-455 ◽  
Author(s):  
Giuseppe Cavallaro ◽  
Giuseppe Lazzara ◽  
Stefana Milioto ◽  
Filippo Parisi

AbstractHybrid material based on halloysite nanotubes (HNTs) and sodium perfluorooctanoate (NaPF8) was used as a consolidant for paper treatment. The consolidation efficiency was determined by thermogravimetry as well as by paper grammage determination. Morphological analysis of the treated paper was performed by means of scanning electron microscopy while the effect of modified HNTs on the thermal behaviour of the cellulose fibres was investigated by differential scanning calorimetry which determined the combustion enthalpy of the paper.Water contact angle measurements were performed to study the paper wettability. The physico-chemical properties investigated (mesoscopic structure, thermal stability and wettability) of the treated paper were correlated successfully with the consolidation loading and, consequently, to the affinity between the fluorinated modified HNTs and the fibrous cellulose structure. This study proposes a new green protocol for paper consolidation based on natural tubular nanoparticles with a flame retardant effect.


2016 ◽  
Vol 36 (2) ◽  
pp. 189-197
Author(s):  
Gabriela Jandikova ◽  
Pavel Kucharczyk ◽  
Norbert Miskolczi ◽  
Alena Pavelkova ◽  
Adriana Kovalcik ◽  
...  

Abstract This work is dedicated to polyester urethane (PEU)-based biocomposites, with special focus placed on techniques for compatibilisation to heighten interfacial adhesion between the PEU matrix and flax fibres. Tests were conducted on the effects of modification so as to increase interfacial adhesion between the flax fibres and the polyester matrix. These tests involved a commercial silane-based compatibilising additive, two experimentally synthesised agents, oleic acid (OA) and di-tert-butyl peroxide (DTBP). Furthermore, the flax fibres underwent acid or alkali treatment. The biocomposites were characterised by gel permeation chromatography, infrared spectroscopy, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). Mechanical properties were investigated through tensile testing. Biocomposites with a commercial silane-based additive and synthesised agent, based on maleic-anhydride, were assessed as the best solution. Nevertheless, all modifications, excluding alkali treatment of fibres, significantly increased the performance of the material.


2006 ◽  
Vol 87 (5) ◽  
pp. 1349-1356 ◽  
Author(s):  
M. Carmo ◽  
T. Q. Faria ◽  
H. Falk ◽  
A. S. Coroadinha ◽  
M. Teixeira ◽  
...  

The present work studies the physico-chemical properties of retroviral vector membrane, in order to provide some explanation for the inactivation kinetics of these vectors and to devise new ways of improving transduction efficiency. For this purpose, vectors with an amphotropic envelope produced by TE Fly A7 cells at two culture temperatures (37 and 32 °C) were characterized by different techniques. Electron paramagnetic resonance (EPR) results showed that vectors produced at 32 °C are more rigid than those produced at 37 °C. Further characterization of vector membrane composition allowed us to conclude that the vector inactivation rate increases with elevated cholesterol to phospholipid ratio. Differential scanning calorimetry (DSC) showed that production temperature also affects the conformation of the membrane proteins. Transduction studies using HCT116 cells and tri-dimensional organ cultures of mouse skin showed that vectors produced at 37 °C have higher stability and thus higher transduction efficiency in gene therapy relevant cells as compared with vectors produced at 32 °C. Overall, vectors produced at 37 °C show an increased stability at temperatures below 4 °C. Since vector membrane physico-chemical properties are affected in response to changes in culture temperature, such changes, along with alterations in medium composition, can be used prospectively to improve the stability and the transduction efficiency of retroviral vectors for therapeutic purposes.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1824
Author(s):  
Katia Rubini ◽  
Elisa Boanini ◽  
Silvia Parmeggiani ◽  
Adriana Bigi

In this paper we used curcumin as a functionalizing agent of gelatin films with the aim to get antioxidant materials with modulated physico-chemical properties. To this aim, we prepared gelatin films at different contents of curcumin up to about 1.2 wt%. The as-prepared films, as well as glutaraldehyde crosslinked films, were submitted to several tests: swelling, water solubility, differential scanning calorimetry, X-ray diffraction, mechanical tests and curcumin release. The radical scavenging activity of the as-prepared films is similar to that of free curcumin, indicating remarkable antioxidant properties. All the other tested properties vary as a function of curcumin content and/or the presence of the crosslinking agent. In particular, the films exhibit sustained curcumin release in different solvents. Thanks to its biocompatibility, biodegradability and lack of antigenicity, gelatin uses span from food processing to packaging and biomaterials. It follows that the modulated properties exhibited by the functionalized materials developed in this work can be usefully employed in different application fields.


DYNA ◽  
2020 ◽  
Vol 87 (213) ◽  
pp. 116-122
Author(s):  
Iván Supelano García ◽  
Carlos Andrés Palacio Gómez ◽  
Julieth Alexandra Mejía Gómez ◽  
Carlos Arturo Parra Vargas

An adequate identification of physico-chemical properties of clay minerals is an important step to develop technological applications. In Colombia, a common issue is that the evaluation of raw materials with the preparation of the final product depend on empirical knowledge, it is common not to use any kind of technological tool to conduct any analysis. In contrast, the clay mixtures for this study were prepared and characterized by following a careful procedure to evaluate and control the qualities such as color of the final product. For this purpose, differential scanning calorimetry, magnetization, scanning electron microscopy, X-rays analysis, and positron annihilation lifetime spectroscopy techniques were applied. It is possible to conclude that the implementation scientific techniques in the sector of clay minerals may serve as a powerful tool, since preparing samples in an empirical way have been proved to lead to different qualities in the final product.


2012 ◽  
Vol 9 (1) ◽  
pp. 29
Author(s):  
Normah Ismail ◽  
Nurul Asyiraf Abdul Jabar

Collagen was extractedfrom catfish (Clarias gariepnus) waste using 0.5M acetic acid and its subsequent precipitation in 2.6M NaCI. The resultant collagen was analysed with respect to its moisture content and physicochemical properties including yield, pH, protein content, colour, odour and thermal stability. A yield of 16.4% and positive collagen attributes indicate that catfish waste has potential as a collagen source. The snowy white, crystal-like and light textured collagen comprises of 5.97% protein and 0.46% moisture, and exhibits a pH of 4.75. Sensory evaluation indicates that the collagen has a slight fishy odour. Viscosity analysis indicates a steady decrease with increasing temperature over the range considered (20-50°C). The pale colour exhibited and limited odour emitted by the extracted collagen indicate that catfish waste collagen could be applied in the food industry without resulting in any undesirable food products attributes. Differential Scanning Calorimetry (DSC) analysis indicated that the collagen exhibits good thermal stability and denatures at a high temperature in a similar manner to mammalian collagen.


Sign in / Sign up

Export Citation Format

Share Document