scholarly journals DEVELOPMENT OF AMORPHOUS BINARY AND TERNARY SOLID DISPERSIONS OF NATEGLINIDE FOR IMPROVED SOLUBILITY AND DISSOLUTION

Author(s):  
SHRADHA S. TIWARI ◽  
SHAILESH J. WADHER ◽  
SURENDRA G. GATTANI

Objective: Nateglinide is a commonly used oral hypoglycemic, biopharmaceutical classification system Class II drug, which shows relatively poor water solubility and variable bioavailability. The objective of the present investigation was to develop the binary and ternary solid dispersions of nateglinide for improved solubility and dissolution. Methods: Nateglinide solid dispersions were prepared by a common solvent evaporation method. Polymers like soluplus, kolliphor P188, sylloid 244FP, gelucire 48/16, affinisol (HPMCAS), HPβCD, βCD were used in different combinations. The physicochemical characterization of the optimized ternary dispersion was studied by using FT-IR, DSC, and PXRD. Solubility and dissolution behavior of all dispersions were studied. Result: From all prepared ternary solid dispersions, nateglinide dissolution was significantly faster than pure nateglinide. With ternary solid dispersion of NTG, soluplus and kolliphor P188 there was a big improvement in solubility and dissolution. This combination enhanced the solubility of NTG by 23 folds. Another ternary dispersion of NTG with soluplus and gelucire 48/16 enhanced solubility by 25 fold. Conclusion: Ternary solid dispersion found superior over binary dispersions. For the ternary dispersions, showing the best solubility, tablets were prepared. Dissolution and drug release from the formulated tablet was as good as a marketed product.

Author(s):  
Preeti Mehra ◽  
Vishal Kapoor ◽  
Naveen Gupta ◽  
Dharmendra Singh Rajpoot ◽  
Neeraj Sharma

Rofecoxib, a new non-steroidal anti-inflammatory agent mainly used for the treatment of osteoarthritis and rheumatoid arthritis. The major drawback of Rofecoxib is its very low water solubility, which results in poor bioavailability after oral administration. Hence, an attempt was made to formulate fast dissolving tablets of Rofecoxib. The solid dispersions of Rofecoxib were prepared with PEG-4000 and PVP K30 by solvent evaporation method. The characterization of prepared solid dispersions by FTIR, XRPD and DSC, which reveals lack of interaction with carriers and dictates amorphous state of solid dispersions. Solid dispersion of Rofecoxib with PVP K30 (1:6) showed maximum dissolution, therefore compressed into tablets by using microcrystalline cellulose, lactose and crosspovidone. The dissolution profile of developed fast dissolving tablets containing solid dispersion of Rofecoxib (1:6) was studied. The formulated formulations showed optimum dissolution efficiency.


2021 ◽  
Vol 56 (3) ◽  
pp. 165-176
Author(s):  
MR Sarkar ◽  
A Hossin ◽  
ASMM Al Hossain ◽  
KMYK Sikdar ◽  
SZ Raihan ◽  
...  

Atorvastatin calcium (ATV) is an HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A) reductase inhibitor commonly known as a cholesterol-lowering agent. As a poorly water-soluble drug its absolute bioavailability is very low. To increase the water solubility as well as oral bioavailability, different hydrophilic carriers were used in different ratios (1:0.5, 1:1 and 1:2) to prepare reproducible binary and ternary solid dispersion formulations of ATV by simple physical mixing (PM) and fusion or melting technique. In vitro dissolution studies results revealed that in all cases, the cumulative percent drug release from ATV ternary SD formulations were greater than binary formulations, some marketed products and pure ATV powder. The order of the carriers in enhancing the drug release was found as kollidon 90F > pregelatinized starch > lutrol> kollidon 12F (99.1%, 98.8%, 96% and 95% respectively) for ternary SD formulations whereas pure ATV powder and marketed products showed cumulative percentage release 70.8%, 68.9% (B1) and 73.1% (B2), respectively. The best-out performed ternary SD formulation ATV:Kollidon 90 F (1:2) were further characterized using FT-IR and SEM. SEM analyses indicated conversion of crystal drug to amorphous form and FT-IR data suggested that little or no interaction between the drug and polymer. Bangladesh J. Sci. Ind. Res.56(3), 165-176, 2021


2020 ◽  
Vol 23 (1) ◽  
pp. 44-53
Author(s):  
Sharmin Akhter ◽  
AKM Saif Uddin ◽  
Aninda Kumar Nath ◽  
Md Salahuddin ◽  
Mohammad Fahim Kadir ◽  
...  

Ketoprofen [2-(3-benzoylphenyl)-propionic acid], a non-steroidal anti-inflammatory drug exhibits poor dissolution pattern. Solid dispersion (SD) techniques were used because it is particularly promising to improve the oral absorption and bioavailability of BCS Class II drugs. This investigation entails solid dispersion of ketoprofen which was formulated and characterized for better release profile and immediate action of the drug. Melting method was applied to prepare solid dispersion by using two immediate release (IR) polymer PEG 6000 and HPMC 6 cps at different weight ratios. In the formulation, a fixed amount of lactose was used as adsorbent. The solid dispersions were investigated for drug entrapment efficiency and dissolution behavior. In vitro dissolution study was performed in phosphate buffer (pH 7.4) medium for one hour. Percent cumulative drug release from solid dispersion was found to be minimum 92.19% and maximum 98.95% within one hour, which showed a better dissolution compared to the active drugs. Evaluation of the properties of the solid dispersion was also performed by using Scanning Electron Microscopy (SEM) study and Differential Thermal Analysis (DTA). SEM results indicated that ketoprofen crystallinity in SDs was significantly reduced, and that the majority of ketoprofen was in amorphous form. No interaction was found between drug and polymers from DTA and Fourier-transform infrared (FTIR) spectroscopy analysis. So, solid dispersion technique may be an effective technique to enhance dissolution rate of ketoprofen. Bangladesh Pharmaceutical Journal 23(1): 44-53, 2020


Author(s):  
ARIF BUDIMAN ◽  
IYAN SOPYAN ◽  
DENIA SEPTY RIYANDI

Objective: The aim of this study was to investigate the effects of changing in the proportions of the solid dispersion formula on the dissolution rate of glibenclamide. Methods: Solid dispersions were prepared by solvent evaporation method by using methanol as solvent, hydroxypropyl methylcellulose (HPMC) and polyvinyl pyrrolidone (PVP) as polymers. The prepared product was evaluated by the saturated solubility test and the dissolution rate test. The prepared product was characterized by Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), and powder X-ray diffraction (PXRD) and Scanning Electron Microscopy (SEM). Results: The result showed solid dispersion with a ratio of glibenclamide: PVP: HPMC (1: 3: 6) has the highest increase in solubility (20 fold) compared to pure glibenclamide. This formula also showed an improvement in dissolution rate from 19.9±1.19% (pure glibenclamide) to 99±1.60% in 60 min. Characterization of FT-IR showed that no chemical reaction occurred in solid dispersion of glibenclamide. The results of X-ray diffraction analysis showed an amorphous form in all solid dispersion formulas. The results of DSC analysis showed that endothermic peak melting point of solid dispersion occurred, and the morphology of solid dispersion was more irregular than pure glibenclamide based on SEM characterization Conclusion: The solid dispersion of glibenclamide using PVP: HPMC as carriers can increase the solubility and dissolution rate compared to pure glibenclamide.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1606
Author(s):  
Debora Zanolla ◽  
Lara Gigli ◽  
Dritan Hasa ◽  
Michele R. Chierotti ◽  
Mihails Arhangelskis ◽  
...  

Two new solvates of the widely used anthelminthic Praziquantel (PZQ) were obtained through mechanochemical screening with different liquid additives. Specifically, 2-pyrrolidone and acetic acid gave solvates with 1:1 stoichiometry (PZQ-AA and PZQ-2P, respectively). A wide-ranging characterization of the new solid forms was carried out by means of powder X-ray diffraction, differential scanning calorimetry, FT-IR, solid-state NMR and biopharmaceutical analyses (solubility and intrinsic dissolution studies). Besides, the crystal structures of the two new solvates were solved from their Synchrotron-PXRD pattern: the solvates are isostructural, with equivalent triclinic packing. In both structures acetic acid and 2-pyrrolidone showed a strong interaction with the PZQ molecule via hydrogen bond. Even though previous studies have shown that PZQ is conformationally flexible, the same syn conformation as the PZQ Form A of the C=O groups of the piperazinone-cyclohexylcarbonyl segment is involved in these two new solid forms. In terms of biopharmaceutical properties, PZQ-AA and PZQ-2P exhibited water solubility and intrinsic dissolution rate much greater than those of anhydrous Form A.


Author(s):  
Kumar P ◽  
S Kumar ◽  
A Kumar ◽  
M Chander

The purpose of this study was to prepare and characterize solid dispersions of the antibacterial agent Cefdinir with PEG 4000 and PVP K-30 with a view to improve its dissolution properties. Investigations of the properties of the dispersions were performed using release studies, X-ray powder diffraction (XRD) and Fourier transform infrared (FTIR). The results obtained showed that the rate of dissolution of Cefdinir was considerably improved when formulated in solid dispersions with PVP K-30 and PEG 4000 as compared with pure drug and physical mixtures. The results from XRD studies showed the transition of crystalline nature of drug to amorphous form, while FTIR studies demonstrated the absence of drug-carriers interaction.


Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1140
Author(s):  
Silvana Alfei ◽  
Gabriella Piatti ◽  
Debora Caviglia ◽  
Anna Maria Schito

The growing resistance of bacteria to current chemotherapy is a global concern that urgently requires new and effective antimicrobial agents, aimed at curing untreatable infection, reducing unacceptable healthcare costs and human mortality. Cationic polymers, that mimic antimicrobial cationic peptides, represent promising broad-spectrum agents, being less susceptible to develop resistance than low molecular weight antibiotics. We, thus, designed, and herein report, the synthesis and physicochemical characterization of a water-soluble cationic copolymer (P5), obtained by copolymerizing the laboratory-made monomer 4-ammoniumbuthylstyrene hydrochloride with di-methyl-acrylamide as uncharged diluent. The antibacterial activity of P5 was assessed against several multi-drug-resistant clinical isolates of both Gram-positive and Gram-negative species. Except for strains characterized by modifications of the membrane charge, most of the tested isolates were sensible to the new molecule. P5 showed remarkable antibacterial activity against several isolates of genera Enterococcus, Staphylococcus, Pseudomonas, Klebsiella, and against Escherichia coli, Acinetobacter baumannii and Stenotrophomonas maltophilia, displaying a minimum MIC value of 3.15 µM. In time-killing and turbidimetric studies, P5 displayed a rapid non-lytic bactericidal activity. Due to its water-solubility and wide bactericidal spectrum, P5 could represent a promising novel agent capable of overcoming severe infections sustained by bacteria resistant the presently available antibiotics.


2021 ◽  
Vol 23 (1) ◽  
pp. 16
Author(s):  
Vienna Saraswaty ◽  
Rossy Choerun Nissa ◽  
Bonita Firdiana ◽  
Akbar Hanif Dawam Abdullah

THE PHYSICOCHEMICAL CHARACTERISTICS OF RECYCLED-PLASTIC PELLETS OBTAINED FROM DISPOSABLE FACE MASK WASTES. The government policy to wear a face mask during the COVID-19 pandemic has increased disposable face mask wastes. Thus, to reduce such wastes, it is necessary to evaluate the physicochemical characteristics of disposable face masks wastes before the recycling process and the recycled products. In this study, physicochemical characterization of the 3-ply disposable face masks and the recycled plastic pellets after disinfection using 0.5% v/v sodium hypochlorite were evaluated. A set of parameters including the characterization of surface morphology by a scanning electron microscope (SEM), functional groups properties by a fourier transform infra-red spectroscopy (FT-IR), thermal behavior by a differential scanning calorimetry (DSC), tensile strength and elongation at break were evaluated. The surface morphological of each layer 3-ply disposable face mask showed that the layers were composed of non-woven fibers. The FT-IR evaluation revealed that 3-ply disposable face mask was made from a polypropylene. At the same time, the DSC analysis found that the polypropylene was in the form of homopolymer. The SEM analysis showed that the recycled plastic pellets showed a rough and uneven surface. The FT-IR, tensile strength and elongation at break of the recycled plastic pellets showed similarity with a virgin PP type CP442XP and a recycled PP from secondary recycling PP (COPLAST COMPANY). In summary, recycling 3-ply disposable face mask wastes to become plastic pellets is recommended for handling disposable face mask wastes problem.


Author(s):  
Samer K. Ali ◽  
Eman B. H. Al-Khedairy

            Atorvastatin (ATR) is poorly soluble anti-hyperlipidemic drug; it belongs to the class II group according to the biopharmaceutical classification system (BCS) with low bioavailability due to its low solubility. Solid dispersions adsorbate is an effective technique for enhancing the solubility and dissolution of poorly soluble drugs.           The present study aims to enhance the solubility and dissolution rate of ATR using solid dispersion adsorption technique in comparison with ordinary solid dispersion. polyethylene glycol 4000 (PEG 4000), polyethylene glycol 6000 (PEG 6000), Poloxamer188 and Poloxamer 407were used as hydrophilic carriers and Aerosil 200, Aerosil 300 and magnesium aluminium silicate (MAS) as adsorbents.            All solid dispersion adsorbate (SDA) formulas  were prepared in ratios of 1:1:1  (drug: carrier: adsorbent) and evaluated for their water solubility, percentage yield, drug content,  , dissolution, crystal structure using  X-ray powder diffraction (XRD) and Differential Scanning Calorimetry (DSC)  studies and Fourier Transform Infrared Spectroscopy (FTIR) for determination the drug-carrier- adsorbate interaction.                The prepared (SDA) showed significant improvement of drug solubility in all prepared formula. Best result was obtained with formula SDA12(ATR :Poloxamer407 : MAS 1:1:1) that showed 8.07 and 5.38  fold increase in solubility compared to  solubility of pure ATR and  solid dispersion(SD4) (Atorvastatin: Poloxamer 407 1:1) respectively due to increased wettability and reduced crystallinity of the drug which leads to improve drug solubility  and  dissolution .


Sign in / Sign up

Export Citation Format

Share Document