scholarly journals A REVIEW ON PYRAZOLINE DERIVATIVES AS ANTIMICROBIAL AGENT

Author(s):  
SARAS KUMAR JAIN ◽  
ROHIT SINGHAL

At present, there is a lot of research about the pyrazoline heterocyclic compound, its ring structure is being changed and new derivatives are being made, many of which have antimicrobial activity over the derivatives. Pyrazoline is the five-member heterocyclic ring which have two N atoms in nearby position and contains two endocyclic double bonds. Noteworthy consideration has been concentrated on pyrazolines and pyrazoline derivative due to their important pharmacological action. Some replaced pyrazolines have been stated near retain particular important pharmacological actions as antimicrobial, antifungal, antineoplastic, antidepressant, insecticidal, anticonvulsant, anti-inflammatory, antibacterial and antitumor properties.

Author(s):  
Shubham Khot ◽  
Pratibha B. Auti ◽  
Samrat A. Khedkar

: The current review discusses the different synthetic pathways for one of the most important and interesting heterocyclic ring systems 1,4-dihydropyridine. This cyclic system depicts diverse pharmacological action at several receptors, channels, and enzymes. Dihydropyridine moiety plays an important role in several calcium-channel blockers. Moreover, it has been exploited for the treatment of a variety of cardiovascular diseases due to its potential antihypertensive, anti-angina, vasodilator, and cardiac depressant activities. Furthermore, it also shows antibacterial, anticancer, antileishmanial, anticoagulant, anticonvulsant, anti-tubercular, antioxidant, antiulcer, and neuroprotective properties. Several reports have demonstrated dihydropyridine derivatives as a potentiator of cystic fibrosis transmembrane conductance regulator protein, potent antimalarial agent and HIV-1 protease inhibitor. Herein, we have briefly reviewed different novel chemistry and synthesis of 1,4-dihydropyridine.


Marine Drugs ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 46
Author(s):  
Karolina Subko ◽  
Sara Kildgaard ◽  
Francisca Vicente ◽  
Fernando Reyes ◽  
Olga Genilloud ◽  
...  

The marine-derived fungus Stilbella fimetaria is a chemically talented fungus producing several classes of bioactive metabolites, including meroterpenoids of the ascochlorin family. The targeted dereplication of fungal extracts by UHPLC-DAD-QTOF-MS revealed the presence of several new along with multiple known ascochlorin analogues (19–22). Their structures and relative configuration were characterized by 1D and 2D NMR. Further targeted dereplication based on a novel 1,4-benzoquinone sesquiterpene derivative, fimetarin A (22), resulted in the identification of three additional fimetarin analogues, fimetarins B–D (23–25), with their tentative structures proposed from detailed MS/HRMS analysis. In total, four new and eight known ascochlorin/fimetarin analogues were tested for their antimicrobial activity, identifying the analogues with a 5-chloroorcylaldehyde moiety to be more active than the benzoquinone analogue. Additionally, the presence of two conjugated double bonds at C-2′/C-3′ and C-4′/C-5′ were found to be essential for the observed antifungal activity, whereas the single, untailored bonds at C-4′/C-5′ and C-8′/C-9′ were suggested to be necessary for the observed antibacterial activity.


2013 ◽  
Vol 63 (1) ◽  
pp. 19-30 ◽  
Author(s):  
Mohammed Afzal Azam ◽  
Loganathan Dharanya ◽  
Charu Chandrakant Mehta ◽  
Sumit Sachdeva

In the present study, a series of benzothiazol derivatives 3a-l containing pyrazolo[3,4-d]pyrimidine moiety at the second position were synthesized and characterized by analytical and spectral data. The compounds were tested for their in vitro antimicrobial activity. Compounds 1-(1,3-benzothiazol-2- yl)-3-methyl-4-phenyl-1H-pyrazolo[3,4-d]pyrimidine (3a), 1- (1,3-benzothiazol-2-yl)-4-(4-chlorophenyl)-3-methyl-1H-pyrazolo[ 3,4-d]pyrimidine (3d) and 1-(1,3-benzothiazol-2-yl)- 3-methyl-4-substituted phenyl-1H-pyrazolo[3,4-d]pyrimidines (3h-j) showed significant inhibitory activity against P. aeruginosa whereas compounds 1-(1,3-benzothiazol-2-yl)-4- (2-chlorophenyl)-3-methyl-1H-pyrazolo[3,4-d]pyrimidine (3b), 2-[1-(1,3-benzothiazol-2-yl)-3-methyl-1H-pyrazolo[3,4-d]pyrimidin- 4-yl]phenol (3e), 1-(1,3-benzothiazol-2-yl)-4-(3,4-dimethoxyphenyl)- 3-methyl-1H-pyrazolo[3,4-d]pyrimidine (3h), 4-[1-(1,3-benzothiazol-2-yl)-3-methyl-1H-pyrazolo[3,4-d]pyri midin-4-yl]-N,N-dimethylaniline (3j) and 1-(1,3-benzothiazol- 2-yl)-3-methyl-4-[2-phenylvinyl]-1H-pyrazolo[3,4-d]pyrimidine (3k) were found to be active against C. albicans. Some of these synthesized compounds were evaluated for their in vivo acute toxicity, analgesic, anti-inflammatory, and ulcerogenic actions. The tested compound 4-[1-(1,3-benzothiazol- 2-yl)-3-methyl-1H-pyrazolo[3,4-d]pyrimidin-4-yl]-N, N-dimethylaniline (3j) exhibited maximum analgesic and anti-inflammatory activities. Compounds 1-(1,3-benzothiazol- -2-yl)-3-methyl-4-(3-nitrophenyl)-1H-pyrazolo[3,4-d]pyrimidine (3i) and 3j showed a significant gastrointestinal protection compared to the standard drug diclofenac sodium.


Author(s):  
Pehlivanović Belma ◽  
Čaklovica Kenan ◽  
Lagumdžija Dina ◽  
Omerović Naida ◽  
Žiga Smajić Nermina ◽  
...  

The pursuance of novel antimicrobial and anti-inflammatory agents has been expanding due to a significant need for more efficient pharmacotherapy of various infections and chronic diseases. During the last decade, pharmacokinetics, pharmacodynamics and pharmacological properties of curcumin have been extensively studied. The aim of the present study was to evaluate the antibacterial activity of curcumin against both Gram-positive and Gram-negative bacteria as well as its antifungal activity by using in vitro agar well diffusion assay. Moreover, the anti-inflammatory activity of curcumin was determined with in vitro assay of inhibition of protein denaturation. Results demonstrated wide antimicrobial activity of curcumin upon all of the test bacteria and fungi. The strongest activity of curcumin was observed at a concentration of 0.50 mg/ml against S. aureus, L. monocytogenes, E. coli, P. aeruginosa and C. albicans, resulting in a maximum zone of inhibition of 14.7 mm, 14.3 mm, 13.7 mm, 10.7 mm and 10.7 mm, respectively. Findings suggested that the antimicrobial activity of curcuminis dependent upon the concentrations. Furthermore, results demonstrated high effectiveness of curcumin compared to standard acetylsalicylic acid in inhibiting heat-induced protein denaturation, which activity is also depended upon the concentrations. The present study emphasises the potential application of curcumin as a natural antimicrobial and anti-inflammatory agent. However, findings of this study are restricted to in vitro assays and consideration should be given to conducting a study involving wider dose range test substances as well as including further research on in vivo models.


Author(s):  
Monther F. Mahdi ◽  
Noor H. Naser ◽  
Nethal H. Hammud

Objective: The objective of this search was to synthesize a new naproxen analogues having a 1,2,4-triazole-3-thiol heterocyclic ring, and preliminary pharmacological assessment of the anti-inflammatory activity of the synthesized compounds. Methods: The synthesis of naproxen analogues that having 1,2,4-triazole-3-thiol heterocyclic ring occur through esterification of naproxen, and then its reaction with hydrazine hydrate, and carbon disulfide, finally different aromatic aldehydes reacted with triazole derivatives of naproxen containing amino group to produce schiff bases.Results: In vivo acute anti-inflammatory activity of the synthesize compounds (Va-Vd) was evaluated in rats using egg-white induced edema model of inflammation in a dose equivalent to (50 mg/kg) of naproxen. All tested compounds were produced a significant reduction in paw edema with respect to the effect of propylene glycol 50% v/v (control group). Compound Vd produced superior anti-inflammatory activity compared to naproxen.Conclusion: The results obtained in this work give evidence about the valid synthesis of 1,2,4 triazole-3-thiol derivatives of naproxen, which reacted with different aldehydes to yield several schiff bases. The incorporation of benzaldehyde possess para-electron donating group (para-hydroxyl benzaldehyde) will increase the anti-inflammatory activity of naproxen.


1969 ◽  
Vol 15 (12) ◽  
pp. 1365-1371 ◽  
Author(s):  
K. -J. Cheng ◽  
G. A. Jones ◽  
F. J. Simpson ◽  
M. P. Bryant

Fifteen strains of bacteria capable of degrading rutin anaerobically were isolated from bovine rumen contents and identified by morphological and biochemical evidence as strains of Butyrivibrio sp. Three cultures from a laboratory collection of 53 strains of rumen bacteria also used rutin anaerobically. Two, Butyrivibrio fibrisolvens D1 and Selenomonas ruminantium GA192, cleaved the glycosidic bond of rutin and fermented the sugar but did not degrade the insoluble aglycone produced; the third strain, Peptostreptococcus sp. B178, degraded the substrate to soluble products. Butyrivibrio sp. C3 degraded rutin, quercitrin, and naringin to water-soluble products, showing that the organism cleaved the heterocyclic ring of these compounds. Butyrivibrio sp. C3 fermented the sugar moiety of hesperidin but did not cleave the heterocyclic ring. It did not attack quercetin, taxifolin, protocatechuic acid, or phloroglucinol. In a medium containing rumen fluid, Butyrivibrio sp. C3 degraded rutin more than twice as fast as it did in a medium containing enzymatic casein hydrolyzate, volatile fatty acids, yeast extract, and hemin in place of rumen fluid.The observations reported in this paper are believed to represent the first recorded demonstration of degradation of the heterocyclic ring structure of rutin and other bioflavonoids in pure cultures of anaerobic bacteria.


Author(s):  
Iswariya S. ◽  
Uma T. S.

Objective: The present study was designed to identify the bioactive phytochemicals and its antibacterial and in vitro anti-inflammatory potential of aqueous and methanolic seed extract of Citrullus lanatus.Methods: The phytochemical screening of both the aqueous and methanolic seed extract was carried out qualitatively to identify the major Phyto-constituents present in the extracts. The antimicrobial activity of the extracts was evaluated against six pathogenic bacterial strains by agar well diffusion method and the Minimum inhibitory concentration (MIC) was determined by broth dilution method. In vitro anti-inflammatory activity of C. lanatus seed extracts was evaluated by using human red blood cell (HRBC) membrane stabilization and inhibition of albumin denaturation method.Results: The results of the study indicated that both the extracts of the seed having antimicrobial activity, while the methanolic extract showed more significant activity against the tested organism than aqueous extract. Methanol extract had the lowest MIC of 1.562 mg/ml against Escherichia coli, Staphylococcus aureus, Klebsiella pneumonia, Pseudomonas aeruginosa and Bacillus subtilis, whereas in aqueous extract was highly sensitive to Bacillus subtilis, E. coli and Klebsiella pneumonia with MIC of 3.125 and 6.25 mg/ml, respectively. Methanolic extracts exerted comparative higher anti-inflammatory activity than aqueous extract.Conclusion: Present study provides a firm evidence to support that the synergistic effect of C. lanatus seed extracts having potent anti-inflammatory and antimicrobial property, which might serve as an effective drug for various microbial infections and inflammatory disorders.


Author(s):  
Asma D. Ambekari ◽  
Shrinivas K. Mohite

Series of novel substituted Synthesis of N-{[5-(substituted)-1,3,4-oxadiazole-2-yl] carbamothioyl} derivatives containing 1,3,4-oxadiazole moiety were synthesized by microwave as a green chemistry method and conventional method by using pyridine 3- carboxylic acid as a starting material. The structures of the synthesized compounds were characterized by physicochemical data, IR, Mass spectra and 1HNMR. All the newly synthesized compound screened for their antimicrobial and In-vivo and In-vitro Anti-inflammatory studies. Anti-inflammatory studies revealed that compound 4f showed significant in-vivo and in-vitro anti-inflammatory activity as well potent antimicrobial activity.


Sign in / Sign up

Export Citation Format

Share Document