Circular RNA expression profiles in cisplatin-induced acute kidney injury in mice

Epigenomics ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1191-1207 ◽  
Author(s):  
Can-Ming Li ◽  
Ming Li ◽  
Zeng-Chun Ye ◽  
Jia-Yan Huang ◽  
Yin Li ◽  
...  

Aim: This study was carried out to identify the expression profile and role of circRNAs in cisplatin-induced acute kidney injury (AKI). Materials & methods: In this study, an AKI model was established in cisplatin-treated mice, and the expression of circRNAs was profiled by next-generation sequencing. The differential expression levels of selected circRNAs were determined by quantitative real-time polymerase chain reaction. Bioinformatics analysis was conducted to predict the functions. Results: In total, 368 circRNAs were detected to be differentially expressed in response to cisplatin treatment. Bioinformatics analysis indicated that the parental genes of the differentially expressed circRNAs were predominantly implicated in the cell and cell part, cellular process and cancer pathways. Conclusion: CircRNAs might be differentially expressed in AKI, which are potentially involved in pathophysiology of cisplatin-induced nephrotoxicity.

Author(s):  
Baokun Sui ◽  
Dong Chen ◽  
Wei Liu ◽  
Bin Tian ◽  
Lei Lv ◽  
...  

Rabies is a lethal disease caused by Rabies lyssavirus, commonly known as rabies virus (RABV), and results in nearly 100 % death once clinical symptoms occur in human and animals. Long non-coding RNAs (lncRNAs) have been reported to be associated with viral infection. But the role of lncRNAs involved in RABV infection is still elusive. In this study, we performed global transcriptome analysis of both of lncRNA and mRNA expression profiles in wild-type (WT) and lab-attenuated RABV-infected mouse brains by using next-generation sequencing. The differentially expressed lncRNAs and mRNAs were analysed by using the edgeR package. We identified 1422 differentially expressed lncRNAs and 4475 differentially expressed mRNAs by comparing WT and lab-attenuated RABV-infected brains. Then we predicted the enriched biological pathways by the Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) database based on the differentially expressed lncRNAs and mRNAs. Our analysis revealed the relationships between lncRNAs and RABV-infection-associated immune response and ion transport-related pathways, which provide a fresh insight into the potential role of lncRNA in immune evasion and neuron injury induced by WT RABV.


2021 ◽  
Vol 9 ◽  
Author(s):  
Huan Zhou ◽  
Bwalya Chanda ◽  
Yu-fei Chen ◽  
Xue-juan Wang ◽  
Ming-yu You ◽  
...  

Previous studies pointed out that a variety of microRNAs (miRNAs) are involved in the pathogenesis of neonatal acute respiratory distress syndrome (NARDS) and play different roles in the pathological process. However, there have been few studies reporting the connection between circular RNA (circRNA) and NARDS, so the expression profile of circRNAs in newborns with acute respiratory distress syndrome remains largely unknown. In the present study, 10 samples obtained from remaining clinical blood samples of newborns hospitalized in a neonatal ward of the First Affiliated Hospital of Nanjing Medical University from January 2020 to October 2020 were divided into the “NARDS” group and “non-NARDS” group according to the Montelux standard and then were analyzed in microarray, and 10 other samples collected from the same place and from January 1, 2021 to August 31, 2021, were used to do RT-qPCR experiment. circRNA expression profiles, in which 741 circRNAs were downregulated and 588 were upregulated, were screened with circRNA high-throughput sequencing. Subsequently, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis of parent genes of the differentially expressed circRNAs revealed that these circRNAs may be related to the process of protein synthesis and metabolism in NARDS. Moreover, five circRNAs—hsa_circ_0058495, hsa_circ_0000367, hsa_circ_0005389, hsa_circ_0059571, and hsa_circ_0006608—were selected randomly among the top 10 circRNAs of the downregulated or upregulated expression profiles. Then, bioinformatics tools were used to predict correlative miRNA and its target genes, which were also subjected to the same bioinformatics analysis for further study. The top 30 enriched KEGG pathway analyses of the 125 target genes suggested that these target genes are widely involved in the synthesis and secretion of endocrine hormones, and the top 30 enriched GO terms based on the 125 target genes are also focused on the protein and DNA processing. Thus, the present results show that circRNAs could promote the inflammation of NARDS which may provide a new therapeutic direction and it can be used as molecular markers for early diagnosis of NARDS, but further molecular biology verification is needed to define the specific role of differentially expressed circRNAs in NARDS.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Yonggang Ma ◽  
Baoqing Zhang ◽  
Dong Zhang ◽  
Shuo Wang ◽  
Maogui Li ◽  
...  

Objective. Intracranial aneurysm (IA) is a fatal disease owing to vascular rupture and subarachnoid hemorrhage. Much attention has been given to circular RNAs (circRNAs) because they may be potential biomarkers for many diseases, but their mechanism in the formation of IA remains unknown. Methods. circRNA expression profile analysis of blood samples was conducted between patients with IA and controls. Overall, 235 differentially expressed circRNAs were confirmed between IA patients and the control group. The reliability of the microarray results was demonstrated by quantitative real-time polymerase chain reaction (qRT-PCR). Results. Of 235 differentially expressed genes, 150 were upregulated, while the other 85 were downregulated. Five miRNAs matched to every differential expression of circRNAs, and related MREs were predicted. We performed gene ontology (GO) analysis to identify the functions of their targeted genes, with the terms “Homophilic cell adhesion via plasma membrane adhesion molecules” and “Positive regulation of cellular process” showing the highest fold enrichment. Conclusions. This study demonstrated the role of circRNA expression profiling in the formation of IA and revealed that the mTOR pathway can be a latent therapeutic strategy for IA.


2020 ◽  
Vol 15 ◽  
Author(s):  
Yeqing Sun ◽  
Lei Chen ◽  
Yingqi Zhang ◽  
Jincheng Zhang ◽  
Shashi Ranjan Tiwari

Background: Osteoarthritis (OA), one of the most important causes leading to joint disability, was considered as an untreatable disease. A series of genes were reported to regulate the pathogenesis of OA, including microRNAs, Long non-coding RNAs and Circular RNA. So far, the expression profiles and functions of lncRNAs, mRNAs, and circRNAs in OA are not fully understood. Objective: The present study aimed to identify differently expressed genes in OA. Methods: The present study conducted RNA-seq to identify differently expressed genes in OA. Ontology (GO) analysis was used to analysis the Molecular Function and Biological Process. KEGG pathway analysis was used to perform the differentially expressed lncRNAs in biological pathways. Results: Hierarchical clustering revealed a total of 943 mRNAs, 518 lncRNAs, and 300 circRNAs were dysregulated in OA compared to normal samples. Furthermore, we constructed differentially expressed mRNAs mediated proteinprotein interaction network, differentially expressed lncRNAs mediated trans regulatory networks, and competitive endogenous RNA (ceRNA) to reveal the interaction among these genes in OA. Bioinformatics analysis revealed these dysregulated genes were involved in regulating multiple biological processes, such as wound healing, negative regulation of ossification, sister chromatid cohesion, positive regulation of interleukin-1 alpha production, sodium ion transmembrane transport, positive regulation of cell migration, and negative regulation of inflammatory response. To the best of our knowledge, this study for the first time revealed the expression pattern of mRNAs, lncRNAs and circRNAs in OA. Conclusion: This study provided novel information to validate these differentially expressed RNAs may be as possible biomarkers and targets in OA.


2020 ◽  
Vol 15 ◽  
Author(s):  
Na Wang ◽  
Yukun Li ◽  
Sijing Liu ◽  
Liu Gao ◽  
Chang Liu ◽  
...  

Background: Recent studies revealed that the hypoglycemic hormone, glucagon-like peptide-1 (GLP-1), acted as an important modulator in osteogenesis of bone marrow derived mesenchymal stem cells (BMSCs). Objectives: The aim of this study was to identify the specific microRNA (miRNA) using bioinformatics analysis and validate the presence of differentially expressed microRNAs with their target genes after GLP-1 receptor agonist (GLP-1RA) administration involved in ostogenesis of BMSCs. Methods: MiRNAs were extracted from BMSCs after 5 days’ treatment and sent for high-throughput sequencing for differentially expressed (DE) miRNAs analyses. Then the expression of the DE miRNAs verified by the real-time RT-PCR analyses. Target genes were predicted, and highly enriched GOs and KEGG pathway analysis were conducted using bioinformatics analysis. For the functional study, two of the target genes, SRY (sex determining region Y)-box 5 (SOX5) and G protein-coupled receptor 84 (GPR84), were identified. Results: A total of 5 miRNAs (miRNA-509-5p, miRNA-547-3p, miRNA-201-3p, miRNA-201-5p, and miRNA-novel-272-mature) were identified differentially expressed among groups. The expression of miRNA-novel-272-mature were decreased during the osteogenic differentiation of BMSCs, and GLP-1RA further decreased its expression. MiRNA-novel-272-mature might interact with its target mRNAs to enhance osteogenesis. The lower expression of miRNA-novel-272-mature led to an increase in SOX5 and a decrease in GPR84 mRNA expression, respectively. Conclusions: Taken together, these results provide further insights to the pharmacological properties of GLP-1RA and expand our knowledge on the role of miRNAs-mRNAs regulation network in BMSCs’ differentiation.


Author(s):  
Han-Wen Chen ◽  
Xiao-Xia Zhang ◽  
Zhu-Ding Peng ◽  
Zu-Min Xing ◽  
Yi-Wen Zhang ◽  
...  

AbstractTreatment of bone cancer pain (BCP) caused by bone metastasis in advanced cancers remains a challenge in clinical oncology, and the underlying mechanisms of BCP are poorly understood. This study aimed to investigate the pathogenic roles of circular RNAs (circRNAs) in regulating cancer cell proliferation and BCP development. Eight differentially expressed circRNAs in the rat spinal cord were validated by agarose gel electrophoresis and Sanger sequencing. Expression of circRNAs and mRNAs was detected by quantitative RT-PCR. MTS assay and flow cytometry were performed to analyze cell proliferation and apoptosis, respectively. Differentially expressed mRNA profiles were characterized by deep RNA sequencing, hierarchical clustering, and functional categorization. The interactions among circRNAs, microRNAs (miRNAs), and mRNAs were predicted using TargetScan. Additionally, western blot was performed to determine the protein levels of Pax8, Isg15, and Cxcl10. Multiple circRNAs were differentially expressed in the spinal cords of BCP model rats; of these, circSlc7a11 showed the greatest increase in expression. The overexpression of circSlc7a11 significantly promoted cell proliferation and repressed apoptosis of LLC-WRC 256 and UMR-106 cells, whereas circSlc7a11 silencing produced the opposite effects. Altered expression of circSlc7a11 also induced substantial changes in the mRNA expression profiles of LLC-WRC 256 cells; these changes were linked to multiple apoptotic processes and signaling pathways, such as the chemokine signaling pathway, and formed a complex circRNA/miRNA/mRNA network. Additionally, Pax8, Isg15, and Cxc110 protein level in LLC-WRC 256 cells was consistent with the mRNA results. The circRNA circSlc7a11 regulates rat BCP development by modulating LLC-WRC 256 cell proliferation and apoptosis through multiple-signaling mechanisms.


Sign in / Sign up

Export Citation Format

Share Document