PanB over-representation as part of pyrazinamide action: a proteomic insight

2021 ◽  
Author(s):  
Isabella Letícia Esteves Barros ◽  
Jean Eduardo Meneguello ◽  
Luciana Dias Ghiraldi-Lopes ◽  
Gláucia Sayuri Arita ◽  
João Vitor de Oliveira Silva ◽  
...  

Background: Pyrazinamide (PZA) represents a milestone as a first-line antituberculosis drug due to its sterilizing activity against Mycobacterium tuberculosis. Materials & Methods: The protein changes induced by subinhibitory PZA exposure of M. tuberculosis in acidic pH were evaluated by a proteomic approach. Results: Among the 1059 M. tuberculosis proteins identified, the specific acidification in the culture medium induced the over-representation of MurF (Rv2157c), and its underrepresentation was induced by 12 h of PZA exposure. PanB (Rv2225) was over-represented at 24 h of PZA exposure. Conclusion: The authors highlight the over-representation of PanB in M. tuberculosis correlates of PZA action in acidic pH, reinforcing the role of the pantothenate pathway as a bacillus drug target to be explored.

mBio ◽  
2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Paridhi Sukheja ◽  
Pradeep Kumar ◽  
Nisha Mittal ◽  
Shao-Gang Li ◽  
Eric Singleton ◽  
...  

ABSTRACT Active tuberculosis (TB) and latent Mycobacterium tuberculosis infection both require lengthy treatments to achieve durable cures. This problem has partly been attributable to the existence of nonreplicating M. tuberculosis “persisters” that are difficult to kill using conventional anti-TB treatments. Compounds that target the respiratory pathway have the potential to kill both replicating and persistent M. tuberculosis and shorten TB treatment, as this pathway is essential in both metabolic states. We developed a novel respiratory pathway-specific whole-cell screen to identify new respiration inhibitors. This screen identified the biphenyl amide GSK1733953A (DG70) as a likely respiration inhibitor. DG70 inhibited both clinical drug-susceptible and drug-resistant M. tuberculosis strains. Whole-genome sequencing of DG70-resistant colonies identified mutations in menG (rv0558), which is responsible for the final step in menaquinone biosynthesis and required for respiration. Overexpression of menG from wild-type and DG70-resistant isolates increased the DG70 MIC by 4× and 8× to 30×, respectively. Radiolabeling and high-resolution mass spectrometry studies confirmed that DG70 inhibited the final step in menaquinone biosynthesis. DG70 also inhibited oxygen utilization and ATP biosynthesis, which was reversed by external menaquinone supplementation. DG70 was bactericidal in actively replicating cultures and in a nutritionally deprived persistence model. DG70 was synergistic with the first-line TB drugs isoniazid, rifampin, and the respiratory inhibitor bedaquiline. The combination of DG70 and isoniazid completely sterilized cultures in the persistence model by day 10. These results suggest that MenG is a good therapeutic target and that compounds targeting MenG along with standard TB therapy have the potential to shorten TB treatment duration. IMPORTANCE This study shows that MenG, which is responsible for the last enzymatic step in menaquinone biosynthesis, may be a good drug target for improving TB treatments. We describe the first small-molecule inhibitor (DG70) of Mycobacterium tuberculosis MenG and show that DG70 has characteristics that are highly desirable for a new antitubercular agent, including bactericidality against both actively growing and nonreplicating mycobacteria and synergy with several first-line drugs that are currently used to treat TB. IMPORTANCE This study shows that MenG, which is responsible for the last enzymatic step in menaquinone biosynthesis, may be a good drug target for improving TB treatments. We describe the first small-molecule inhibitor (DG70) of Mycobacterium tuberculosis MenG and show that DG70 has characteristics that are highly desirable for a new antitubercular agent, including bactericidality against both actively growing and nonreplicating mycobacteria and synergy with several first-line drugs that are currently used to treat TB.


2019 ◽  
Vol 15 ◽  
Author(s):  
Hayalla Corrêa de Carvalho ◽  
Andressa Lorena Ieque ◽  
Tamires Leite Valverde ◽  
Vanessa Pietrowski Baldin ◽  
Jean Eduardo Meneguello ◽  
...  

Background: For more than 60 years, the lack of new anti-tuberculosis drugs and the increase of resistant Mycobacterium tuberculosis lineages exhibit a therapeutic challenge, demanding new options for the treatment of resistant tuberculosis. Objective: Herein, we determined the (i) activities of (-)-camphene and derivatives and (ii) combinatory effect with pyrazinamide (PZA) against Mycobacterium tuberculosis in acidic pH and (iii) cytotoxicity in VERO cells. Methods: The activity of (-)-camphene and 15 derivatives were determined in M. tuberculosis H37Rv in culture medium at pH 6.0 by Resazurin Microtiter Assay Plate (REMA). The combinatory study of three (-)-camphene derivatives with PZA was carried out in seven multidrug-resistant (MDR) clinical isolates by REMA and Checkerboard, respectively. The assay of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) bromide in VERO cells was used to determine the derivatives cytotoxicity. Results: Four (-)-Camphene derivatives, (4), (5a) (5d) and (5h), showed reduction in MIC value at pH 6.0 compared to MIC detected at pH 6.8 in M. tuberculosis H37Rv and multidrug resistant clinical isolates. Three (-)-camphene derivatives, (4), (5d) and (5h), showed synergistic effect (FICI ≤ 0.5) combined with PZA and were more selective for M. tuberculosis than VERO cell (selective index from 7.7 to 84.2). Conclusion: Three (-)-camphene derivatives have shown to be promising anti-TB molecule scaffold due to the low MIC values in acidic pH against MDR M. tuberculosis clinical isolates, synergism with PZA and low cytotoxicity.


2017 ◽  
Author(s):  
Wei Lin ◽  
Soma Mandal ◽  
David Degen ◽  
Yu Liu ◽  
Yon W. Ebright ◽  
...  

One Sentence SummaryStructures of Mycobacterium tuberculosis RNA polymerase reveal taxon-specific properties and binding sites of known and new antituberculosis agentsAbstractMycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, which kills 1.8 million annually. Mtb RNA polymerase (RNAP) is the target of the first-line antituberculosis drug rifampin (Rif). We report crystal structures of Mtb RNAP, alone and in complex with Rif. The results identify an Mtb-specific structural module of Mtb RNAP and establish that Rif functions by a steric-occlusion mechanism that prevents extension of RNA. We also report novel non-Rif-related compounds–Nα-aroyl-N-aryl-phenylalaninamides (AAPs)–that potently and selectively inhibit Mtb RNAP and Mtb growth, and we report crystal structures of Mtb RNAP in complex with AAPs. AAPs bind to a different site on Mtb RNAP than Rif, exhibit no cross-resistance with Rif, function additively when co-administered with Rif, and suppress resistance emergence when co-administered with Rif.


2018 ◽  
Vol 62 (8) ◽  
Author(s):  
Wing Wai Yew ◽  
Kwok Chiu Chang ◽  
Denise P. Chan

ABSTRACT Hepatotoxicity induced by antituberculosis drugs is a serious adverse reaction with significant morbidity and even, rarely, mortality. This form of toxicity potentially impacts the treatment outcome of tuberculosis in some patients. Covering only first-line antituberculosis drugs, this review addresses whether and how oxidative stress and, more broadly, disturbance in redox homeostasis alongside mitochondrial dysfunction may contribute to the hepatotoxicity induced by them. Risk factors for such toxicity that have been identified, in addition to genetic factors, principally include old age, malnutrition, alcoholism, chronic hepatitis C and chronic hepatitis B infection, HIV infection, and preexisting liver disease. Importantly, these comorbid conditions are associated with oxidative stress and drugs related to antioxidants, especially those for management of mitochondrial dysfunction. Thus, the shared pathogenetic mechanism(s) for liver injury might be in operation due to disease-drug interaction. Our current ability to predict, prevent, or treat hepatotoxicity (other than removing potentially hepatotoxic drugs) remains limited. More translational research to unravel the pathogenesis, inclusive of the underlying molecular bases, regarding antituberculosis drug-induced hepatotoxicity is needed, and so is clinical research pertaining to the advances in therapy, with antioxidants and beyond. The role of pharmacogenetics in the clinical management of drug-induced hepatotoxicity also likely merits further evaluation.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259181
Author(s):  
Andrea Olga Papadopoulos ◽  
Christopher Ealand ◽  
Bhavna Gowan Gordhan ◽  
Michael VanNieuwenhze ◽  
Bavesh Davandra Kana

Mycobacterium tuberculosis, the causative agent of tuberculosis remains a global health concern, further compounded by the high rates of HIV-TB co-infection and emergence of multi- and extensive drug resistant TB, all of which have hampered efforts to eradicate this disease. As a result, novel anti-tubercular interventions are urgently required, with the peptidoglycan component of the M. tuberculosis cell wall emerging as an attractive drug target. Peptidoglycan M23 endopeptidases can function as active cell wall hydrolases or degenerate activators of hydrolases in a variety of bacteria, contributing to important processes such as bacterial growth, division and virulence. Herein, we investigate the function of the Rv0950-encoded putative M23 endopeptidase in M. tuberculosis. In silico analysis revealed that this protein is conserved in mycobacteria, with a zinc-binding catalytic site predictive of hydrolytic activity. Transcript analysis indicated that expression of Rv0950c was elevated during lag and log phases of growth and reduced in stationary phase. Deletion of Rv0950c yielded no defects in growth, colony morphology, antibiotic susceptibility or intracellular survival but caused a reduction in cell length. Staining with a monopeptide-derived fluorescent D-amino acid, which spatially reports on sites of active PG biosynthesis or repair, revealed an overall reduction in uptake of the probe in ΔRv0950c. When stained with a dipeptide probe in the presence of cell wall damaging agents, the ΔRv0950c mutant displayed reduced sidewall labelling. As bacterial peptidoglycan metabolism is important for survival and pathogenesis, the role of Rv0950c and other putative M23 endopeptidases in M. tuberculosis should be explored further.


1999 ◽  
Vol 181 (7) ◽  
pp. 2044-2049 ◽  
Author(s):  
Ying Zhang ◽  
Angelo Scorpio ◽  
Hiroshi Nikaido ◽  
Zhonghe Sun

ABSTRACT Pyrazinamide (PZA) is an important antituberculosis drug. Unlike most antibacterial agents, PZA, despite its remarkable in vivo activity, has no activity against Mycobacterium tuberculosis in vitro except at an acidic pH. M. tuberculosis is uniquely susceptible to PZA, but other mycobacteria as well as nonmycobacteria are intrinsically resistant. The role of acidic pH in PZA action and the basis for the unique PZA susceptibility of M. tuberculosisare unknown. We found that in M. tuberculosis, acidic pH enhanced the intracellular accumulation of pyrazinoic acid (POA), the active derivative of PZA, after conversion of PZA by pyrazinamidase. In contrast, at neutral or alkaline pH, POA was mainly found outside M. tuberculosis cells. PZA-resistantM. tuberculosis complex organisms did not convert PZA into POA. Unlike M. tuberculosis, intrinsically PZA-resistant M. smegmatis converted PZA into POA, but it did not accumulate POA even at an acidic pH, due to a very active POA efflux mechanism. We propose that a deficient POA efflux mechanism underlies the unique susceptibility of M. tuberculosisto PZA and that the natural PZA resistance of M. smegmatis is due to a highly active efflux pump. These findings may have implications with regard to the design of new antimycobacterial drugs.


2018 ◽  
Vol 23 (3) ◽  
pp. 233-249 ◽  
Author(s):  
Eric Bonetto ◽  
Fabien Girandola ◽  
Grégory Lo Monaco

Abstract. This contribution consists of a critical review of the literature about the articulation of two traditionally separated theoretical fields: social representations and commitment. Besides consulting various works and communications, a bibliographic search was carried out (between February and December, 2016) on various databases using the keywords “commitment” and “social representation,” in the singular and in the plural, in French and in English. Articles published in English or in French, that explicitly made reference to both terms, were included. The relations between commitment and social representations are approached according to two approaches or complementary lines. The first line follows the role of commitment in the representational dynamics: how can commitment transform the representations? This articulation gathers most of the work on the topic. The second line envisages the social representations as determinants of commitment procedures: how can these representations influence the effects of commitment procedures? This literature review will identify unexploited tracks, as well as research perspectives for both areas of research.


1991 ◽  
Vol 125 (3) ◽  
pp. 280-285 ◽  
Author(s):  
J. Alan Talbot ◽  
Ann Lambert ◽  
Robert Mitchell ◽  
Marek Grabinski ◽  
David C. Anderson ◽  
...  

Abstract We have investigated the role of Ca2+ in the control of FSH-induced estradiol secretion by Sertoli cells isolated from 8-10 days old rats. Exogenous Ca2+ (4-8 mmol/1) inhibited FSH-stimulated E2 secretion such that, with 8 mmol/l Ca2+ and FSH (8 IU/l) E2 secretion decreased from 2091±322 to 1480±84 pmol/l (p<0.002), whilst chelation of Ca2+ in the culture medium with EGTA (3 mmol/l) increased E2 secretion from 360±45 to 1242±133 pmol/l) in the absence of FSH. Further, EGTA (3 mmol/l) markedly potentiated FSH (8 IU/l), forskolin (1 μmol/l) and dibutyryl cAMP (1 mmol/l)-stimulated E2 secretion. Addition of the Ca2+ ionophores, ionomycin (2-5 μmol/l) and A23187 (2 μmol/l), inhibited FSH (8 IU/l)-stimulated E2 secretion by >80%. The effect of ionomycin was totally reversible, whereas that of A23187 was irreversible. Ionomycin (5 μmol/l) had no effect on EGTA-induced E2 secretion in the absence of FSH, but reduced EGTA-provoked E2 secretion by 59% in the presence of FSH (8 IU/l). Similarly, forskolin- and dibutyryl cAMP-provoked E2 production was inhibited 46-50% by ionomycin (5 μmol/l). We conclude that FSH-induced E2 secretion from immature rat Sertoli cells is modulated by intra- and extracellular Ca2+.


2020 ◽  
Vol 7 (2) ◽  
pp. 205-211
Author(s):  
Kaynat Fatima ◽  
Syed Tasleem Raza ◽  
Ale Eba ◽  
Sanchita Srivastava ◽  
Farzana Mahdi

The function of protein kinases is to transfer a γ-phosphate group from ATP to serine, threonine, or tyrosine residues. Many of these kinases are linked to the initiation and development of human cancer. The recent development of small molecule kinase inhibitors for the treatment of different types of cancer in clinical therapy has proven successful. Significantly, after the G-protein-coupled receptors, protein kinases are the second most active category of drug targets. Imatinib mesylate was the first tyrosine kinase inhibitor (TKI), approved for chronic myeloid leukemia (CML) treatment. Imatinib induces appropriate responses in ~60% of patients; with ~20% discontinuing therapy due to sensitivity, and ~20% developing drug resistance. The introduction of newer TKIs such as, nilotinib, dasatinib, bosutinib, and ponatinib has provided patients with multiple options. Such agents are more active, have specific profiles of side effects and are more likely to reach the necessary milestones. First-line treatment decisions must be focused on CML risk, patient preferences and comorbidities. Given the excellent result, half of the patients eventually fail to seek first-line treatment (due to discomfort or resistance), with many of them needing a third or even further therapy lines. In the present review, we will address the role of tyrosine kinase inhibitors in therapy for chronic myeloid leukemia.


Sign in / Sign up

Export Citation Format

Share Document