scholarly journals Gut microorganisms and neurological disease perspectives

2021 ◽  
pp. FNL53
Author(s):  
Nairita Ahsan Faruqui ◽  
Durdana Hossain Prium ◽  
Sadrina Afrin Mowna ◽  
Md. Asad Ullah ◽  
Yusha Araf ◽  
...  

The gastrointestinal tract of every healthy human consists of a unique set of gut microbiota that collectively harbors a diverse and complex community of over 100 trillion microorganisms, including bacteria, viruses, archaea, protozoa and fungi. Gut microbes have a symbiotic relationship with our body. The composition of the microbiota is shaped early in life by gut maturation, which is influenced by several factors. Intestinal bacteria are crucial in maintaining immune and metabolic homeostasis and protecting against pathogens. Dysbiosis of gut microbiota is associated not only with intestinal disorders but also with extraintestinal diseases such as metabolic and neurological disorders. In this review, the authors examine different studies that have revealed the possible hypotheses and links in the development of neurological disorders associated with the gut microbiome.

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Safa Salim ◽  
Ayesha Banu ◽  
Amira Alwa ◽  
Swetha B. M. Gowda ◽  
Farhan Mohammad

AbstractThe idea that alterations in gut-microbiome-brain axis (GUMBA)-mediated communication play a crucial role in human brain disorders like autism remains a topic of intensive research in various labs. Gastrointestinal issues are a common comorbidity in patients with autism spectrum disorder (ASD). Although gut microbiome and microbial metabolites have been implicated in the etiology of ASD, the underlying molecular mechanism remains largely unknown. In this review, we have summarized recent findings in human and animal models highlighting the role of the gut-brain axis in ASD. We have discussed genetic and neurobehavioral characteristics of Drosophila as an animal model to study the role of GUMBA in ASD. The utility of Drosophila fruit flies as an amenable genetic tool, combined with axenic and gnotobiotic approaches, and availability of transgenic flies may reveal mechanistic insight into gut-microbiota-brain interactions and the impact of its alteration on behaviors relevant to neurological disorders like ASD.


Nutrients ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1613 ◽  
Author(s):  
Ronald Hills ◽  
Benjamin Pontefract ◽  
Hillary Mishcon ◽  
Cody Black ◽  
Steven Sutton ◽  
...  

The gut microbiome plays an important role in human health and influences the development of chronic diseases ranging from metabolic disease to gastrointestinal disorders and colorectal cancer. Of increasing prevalence in Western societies, these conditions carry a high burden of care. Dietary patterns and environmental factors have a profound effect on shaping gut microbiota in real time. Diverse populations of intestinal bacteria mediate their beneficial effects through the fermentation of dietary fiber to produce short-chain fatty acids, endogenous signals with important roles in lipid homeostasis and reducing inflammation. Recent progress shows that an individual’s starting microbial profile is a key determinant in predicting their response to intervention with live probiotics. The gut microbiota is complex and challenging to characterize. Enterotypes have been proposed using metrics such as alpha species diversity, the ratio of Firmicutes to Bacteroidetes phyla, and the relative abundance of beneficial genera (e.g., Bifidobacterium, Akkermansia) versus facultative anaerobes (E. coli), pro-inflammatory Ruminococcus, or nonbacterial microbes. Microbiota composition and relative populations of bacterial species are linked to physiologic health along different axes. We review the role of diet quality, carbohydrate intake, fermentable FODMAPs, and prebiotic fiber in maintaining healthy gut flora. The implications are discussed for various conditions including obesity, diabetes, irritable bowel syndrome, inflammatory bowel disease, depression, and cardiovascular disease.


2018 ◽  
Vol 168 (1) ◽  
pp. 40-60 ◽  
Author(s):  
Joseph L Dempsey ◽  
Dongfang Wang ◽  
Gunseli Siginir ◽  
Qiang Fei ◽  
Daniel Raftery ◽  
...  

AbstractThe gut microbiome regulates important host metabolic pathways including xenobiotic metabolism and intermediary metabolism, such as the conversion of primary bile acids (BAs) into secondary BAs. The nuclear receptors pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are well-known regulators for xenobiotic biotransformation in liver. However, little is known regarding the potential effects of PXR and CAR on the composition and function of the gut microbiome. To test our hypothesis that activation of PXR and CAR regulates gut microbiota and secondary BA synthesis, 9-week-old male conventional and germ-free mice were orally gavaged with corn oil, PXR agonist PCN (75 mg/kg), or CAR agonist TCPOBOP (3 mg/kg) once daily for 4 days. PCN and TCPOBOP decreased two taxa in the Bifidobacterium genus, which corresponded with decreased gene abundance of the BA-deconjugating enzyme bile salt hydrolase. In liver and small intestinal content of germ-free mice, there was a TCPOBOP-mediated increase in total, primary, and conjugated BAs corresponding with increased Cyp7a1 mRNA. Bifidobacterium, Dorea, Peptociccaceae, Anaeroplasma, and Ruminococcus positively correlated with T-UDCA in LIC, but negatively correlated with T-CDCA in serum. In conclusion, PXR and CAR activation downregulates BA-metabolizing bacteria in the intestine and modulates BA homeostasis in a gut microbiota-dependent manner.


Nutrients ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 79 ◽  
Author(s):  
Marco Busnelli ◽  
Stefano Manzini ◽  
Giulia Chiesa

It is widely recognized that the microorganisms inhabiting our gastrointestinal tract—the gut microbiota—deeply affect the pathophysiology of the host. Gut microbiota composition is mostly modulated by diet, and gut microorganisms communicate with the different organs and tissues of the human host by synthesizing hormones and regulating their release. Herein, we will provide an updated review on the most important classes of gut microbiota-derived hormones and their sensing by host receptors, critically discussing their impact on host physiology. Additionally, the debated interplay between microbial hormones and the development of cardiovascular disease will be thoroughly analysed and discussed.


RMD Open ◽  
2019 ◽  
Vol 5 (2) ◽  
pp. e001037 ◽  
Author(s):  
Jean-Marie Berthelot ◽  
Jérémie Sellam ◽  
Yves Maugars ◽  
Francis Berenbaum

DNA of gut microbiota can be found in synovium of osteoarthritis and rheumatoid arthritis. This finding could result from the translocation of still alive bacteria from gut to joints through blood, since the diversified dormant microbiota of healthy human blood can be transiently resuscitated in vitro. The recent finding of gut microbiome in human cartilage, which differed between osteoarthritis and controls, suggests that a similar trafficking of dead or alive bacteria from gut microbiota physiologically occurs between gut and epiphysial bone marrow. Subchondral microbiota could enhance cartilage healing and transform components of deep cartilage matrix in metabolites with immunosuppressive properties. The differences of microbiome observed between hip and knee cartilage, either in osteoarthritis or controls, might be the counterpart of subtle differences in chondrocyte metabolism, themselves in line with differences in DNA methylation according to joints. Although bacteria theoretically cannot reach chondrocytes from the surface of intact cartilage, some bacteria enter the vascular channels of the epiphysial growth cartilage in young animals, whereas others can infect chondrocytes in vitro. In osteoarthritis, the early osteochondral plate angiogenesis may further enhance the ability of microbiota to locate close to the deeper layers of cartilage, and this might lead to focal dysbiosis, low-grade inflammation, cartilage degradation, epigenetic changes in chondrocytes and worsening of osteoarthritis. More studies on cartilage across different ethnic groups, weights, and according to age, are needed, to confirm the silent presence of gut microbiota close to human cartilage and better understand its physiologic and pathogenic significance.


2020 ◽  
Vol 14 ◽  
pp. 117955492093386
Author(s):  
Dhiraj Abhyankar ◽  
Kelly T McKee ◽  
Pavle Vukojevic

Immuno-oncology drugs (IODs) have revolutionized the treatment of some cancers. Although IODs are enabling some patients with cancer to become long-time survivors, only 30% to 40% respond to these drugs. There is experimental and clinical evidence that the gut microbiome may play a role in IOD response, leading to speculation that manipulation of the gut microenvironment might improve the response rate to IODs. We review the evidence relating to how gut microorganisms may affect response to IODs and discuss the implications of targeting the microbiome to improve IOD response, including the challenges to refine and translate the findings to practical clinical use.


2021 ◽  
Vol 8 ◽  
Author(s):  
Rannapaula Lawrynhuk Urbano Ferreira ◽  
Karine Cavalcanti Maurício Sena-Evangelista ◽  
Eduardo Pereira de Azevedo ◽  
Francisco Irochima Pinheiro ◽  
Ricardo Ney Cobucci ◽  
...  

This review covers current knowledge of selenium in the dietary intake, its bioavailability, metabolism, functions, biomarkers, supplementation and toxicity, as well as its relationship with diseases and gut microbiota specifically on the symbiotic relationship between gut microflora and selenium status. Selenium is essential for the maintenance of the immune system, conversion of thyroid hormones, protection against the harmful action of heavy metals and xenobiotics as well as for the reduction of the risk of chronic diseases. Selenium is able to balance the microbial flora avoiding health damage associated with dysbiosis. Experimental studies have shown that inorganic and organic selenocompounds are metabolized to selenomethionine and incorporated by bacteria from the gut microflora, therefore highlighting their role in improving the bioavailability of selenocompounds. Dietary selenium can affect the gut microbial colonization, which in turn influences the host's selenium status and expression of selenoproteoma. Selenium deficiency may result in a phenotype of gut microbiota that is more susceptible to cancer, thyroid dysfunctions, inflammatory bowel disease, and cardiovascular disorders. Although the host and gut microbiota benefit each other from their symbiotic relationship, they may become competitors if the supply of micronutrients is limited. Intestinal bacteria can remove selenium from the host resulting in two to three times lower levels of host's selenoproteins under selenium-limiting conditions. There are still gaps in whether these consequences are unfavorable to humans and animals or whether the daily intake of selenium is also adapted to meet the needs of the bacteria.


2020 ◽  
Vol 134 (12) ◽  
pp. 1521-1535 ◽  
Author(s):  
Xinhuan Su ◽  
Ying Zhao ◽  
Yang Li ◽  
Shizhan Ma ◽  
Zhe Wang

Abstract Background Previous studies have shown that the gut microbiome is associated with thyroid diseases, including Graves’ disease, Hashimoto's disease, thyroid nodules, and thyroid cancer. However, the association between intestinal flora and primary hypothyroidism remains elusive. We aimed to characterize gut microbiome in primary hypothyroidism patients. Methods Fifty-two primary hypothyroidism patients and 40 healthy controls were recruited. The differences in gut microbiota between the two groups were analyzed by 16S rRNA sequencing technology. Fecal microbiota transplantation (FMT) was performed in mice using flora from both groups; changes in thyroid function were then assessed in the mice. Results There were significant differences in α and β diversities of gut microbiota between primary hypothyroidism patients and healthy individuals. The random forest analysis indicated that four intestinal bacteria (Veillonella, Paraprevotella, Neisseria, and Rheinheimera) could distinguish untreated primary hypothyroidism patients from healthy individuals with the highest accuracy; this was confirmed by receiver operator characteristic curve analysis. The short chain fatty acid producing ability of the primary hypothyroidism patients’ gut was significantly decreased, which resulted in the increased serum lipopolysaccharide (LPS) levels. The FMT showed that mice receiving the transplant from primary hypothyroidism patients displayed decreased total thyroxine levels. Conclusions Our study suggests that primary hypothyroidism causes changes in gut microbiome. In turn, an altered flora can affect thyroid function in mice. These findings could help understand the development of primary hypothyroidism and might be further used to develop potential probiotics to facilitate the adjuvant treatment of this disease.


2019 ◽  
Vol 7 (3) ◽  
pp. 478-481
Author(s):  
Myriam Abboud ◽  
Dimitrios Papandreou

The gut microbiome is now considered as a large organ that has a direct effect on gastrointestinal tract, immune and endocrine system. There is no evidence that gut microbiota regulates the immune system and is responsible for bone formation and destruction. Probiotics have been shown through the gastrointestinal tract to have a positive effect on the management of the healthy bone. This article discusses the latest data available from PubMed and Scopus databases regarding gut microbiome, probiotics and bone briefly.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lingshu Zhang ◽  
Pingying Qing ◽  
Hang Yang ◽  
Yongkang Wu ◽  
Yi Liu ◽  
...  

Systemic lupus erythematosus (SLE), often considered the prototype of autoimmune diseases, is characterized by over-activation of the autoimmune system with abnormal functions of innate and adaptive immune cells and the production of a large number of autoantibodies against nuclear components. Given the highly complex and heterogeneous nature of SLE, the pathogenesis of this disease remains incompletely understood and is presumed to involve both genetic and environmental factors. Currently, disturbance of the gut microbiota has emerged as a novel player involved in the pathogenesis of SLE. With in-depth research, the understanding of the intestinal bacteria-host interaction in SLE is much more comprehensive. Recent years have also seen an increase in metabolomics studies in SLE with the attempt to identify potential biomarkers for diagnosis or disease activity monitoring. An intricate relationship between gut microbiome changes and metabolic alterations could help explain the mechanisms by which gut bacteria play roles in the pathogenesis of SLE. Here, we review the role of microbiota dysbiosis in the aetiology of SLE and how intestinal microbiota interact with the host metabolism axis. A proposed treatment strategy for SLE based on gut microbiome (GM) regulation is also discussed in this review. Increasing our understanding of gut microbiota and their function in lupus will provide us with novel opportunities to develop effective and precise diagnostic strategies and to explore potential microbiota-based treatments for patients with lupus.


Sign in / Sign up

Export Citation Format

Share Document