Redox-sensitive dimeric camptothecin phosphatidylcholines-based liposomes for improved anticancer efficacy

Nanomedicine ◽  
2019 ◽  
Vol 14 (23) ◽  
pp. 3057-3074 ◽  
Author(s):  
Wei He ◽  
Yawei Du ◽  
Wenya Zhou ◽  
Chen Yao ◽  
Xinsong Li

Aim: A redox-triggered camptothecin (CPT) liposomal system was developed for an improved clinical potential in tumor therapy. Materials & methods: CPT–phosphorylcholine conjugates (CPT–SS–GPCs: CPT–SS–3–GPC and CPT–SS–11–GPC) were synthesized by conjugating CPT to glycerylphosphorylcholine via disulfide bond linker. CPT–SS–GPCs could be assembled into liposomes. Different in vitro and in vivo analyses were used to evaluate the anticancer activities of CPT–SS–GPCs. Results: CPT–SS–GPCs liposomes exhibited extremely high drug loading and uniform size of 150–200 nm. Moreover, the rapid release of parent CPT in reductive condition and high cellular uptake of CPT–SS–GPCs liposomes were observed. At last, in vitro and in vivo anticancer assay showed the enhanced efficacy of CPT–SS–GPCs liposomes. Conclusion: Redox-triggered CPT–SS–GPC liposomes have great potential in tumor therapy.

2021 ◽  
Author(s):  
Yuanyuan Zhong ◽  
Li Zhang ◽  
Shian Sun ◽  
Zhenghao Zhou ◽  
Yunsu Ma ◽  
...  

Abstract With hollow mesoporous silica (hMSN) and injectable macroporous hydrogel (Gel) used as the internal and external drug-loading material respectively, a sequential drug delivery system DOX-CA4P@Gel was constructed, in which combretastatin A4 phosphate (CA4P) and doxorubicin (DOX) were both loaded. The anti-angiogenic drug, CA4P was initially released due to the degradation of Gel, followed by the anti-cell proliferative drug, DOX, released from hMSN in tumor microenvironment. Results showed that CA4P was mainly released at the early stage. At 48 h, CA4P release reached 71.08%, while DOX was only 14.39%. At 144 h, CA4P was 78.20%, while DOX release significantly increased to 61.60%, showing an obvious sequential release behavior. Photodynamic properties of porphyrin endow hydrogel (φΔ(Gel)=0.91) with enhanced tumor therapy effect. In vitro and in vivo experiments showed that dual drugs treated groups have better tumor inhibition than solo drug under near infrared laser irradiation, indicating the effectivity of combined photodynamic-chemotherapy.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1593
Author(s):  
Min Yang ◽  
Xiaohui Wang ◽  
Fang Pu ◽  
Ying Liu ◽  
Jia Guo ◽  
...  

Exosomes, as natural nanovesicles, have become a spotlight in the field of cancer therapy due to their reduced immunogenicity and ability to overcome physiological barriers. However, the tumor targeting ability of exosomes needs to be improved before its actual application. Herein, a multiple targeted engineered exosomes nanoplatform was constructed through rare earth element Gd and Dy-doped and TAT peptide-modified carbon dots (CDs:Gd,Dy-TAT) encapsulated into RGD peptide engineered exosomes (Exo-RGD), which were used to enhance the effect of cancer imaging diagnosis and photothermal therapy. In vitro and in vivo experiments showed that the resulting CDs:Gd,Dy-TAT@Exo-RGD could effectively accumulate at cancer site with an increased concentration owing to the targeting peptides modification and exosomes encapsulation. The tumor therapy effects of mice treated with CDs:Gd,Dy-TAT@Exo-RGD were heightened compared with mice from the CDs:Gd,Dy control group. After intravenous injection of CDs:Gd,Dy-TAT@Exo-RGD into tumor-bearing mice, the temperature of tumors rose to above 50 °C under NIR irradiation and the localized hyperpyrexia induced by CDs could remarkably ablate tumors. The survival rate of the mice was 100% after 60 days. In addition, the CDs:Gd,Dy-TAT@Exo-RGD exhibited higher MRI/CT imaging contrast enhancement of tumor sites than that of CDs:Gd,Dy. Our study identified that engineered exosomes are a powerful tool for encapsulating multiple agents to enhance cancer theranostic efficiency and provide insight into precise personalized nanomedicine.


2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Chen Du ◽  
Yan Liang ◽  
Qingming Ma ◽  
Qianwen Sun ◽  
Jinghui Qi ◽  
...  

Abstract Background Synergistic therapy of tumor is a promising way in curing cancer and in order to achieve effective tumor therapy with real-time drug release monitoring, dynamic cellular imaging and antitumor activity. Results In this work, a polymeric nanoparticle with Forster resonance energy transfer (FRET) effect and chemo-photodynamic properties was fabricated as the drug vehicle. An amphiphilic polymer of cyclo(RGDfCSH) (cRGD)-poly(ethylene glycol) (PEG)-Poly(l-histidine) (PH)-poly(ε-caprolactone) (PCL)-Protoporphyrin (Por)-acting as both a photosensitizer for photodynamic therapy (PDT) and absorption of acceptor in FRET was synthesized and self-assembled into polymeric nanoparticles with epirubicin (EPI)-acting as an antitumor drug for chemotherapy and fluorescence of donor in FRET. Spherical EPI-loaded nanoparticles with the average size of 150 ± 2.4 nm was procured with negatively charged surface, pH sensitivity and high drug loading content (14.9 ± 1.5%). The cellular uptake of EPI-loaded cRGD-PEG-PH-PCL-Por was monitored in real time by the FRET effect between EPI and cRGD-PEG-PH-PCL-Por. The polymeric nanoparticles combined PDT and chemotherapy showed significant anticancer activity both in vitro (IC50 = 0.47 μg/mL) and better therapeutic efficacy than that of free EPI in vivo. Conclusions This work provided a versatile strategy to fabricate nanoassemblies for intracellular tracking of drug release and synergistic chemo-photodynamic therapy.


2020 ◽  
Vol 13 (3) ◽  
pp. 44 ◽  
Author(s):  
Mohsen Ghaferi ◽  
Samar Amari ◽  
Bhalchandra Vivek Mohrir ◽  
Aun Raza ◽  
Hasan Ebrahimi Shahmabadi ◽  
...  

This study aimed to evaluate the therapeutic efficacy of the cisplatin encapsulated into polybutylcyanoacrylate (PBCA) nanoparticles for the treatment of kidney cancer. The nanoformulation was successfully developed using the miniemulsion polymerization method and characterized in terms of size, size distribution, drug loading and encapsulation efficiencies, drug release behavior, in vitro cytotoxicity effects, in vivo toxicity, and therapeutic effects. Cisplatin-loaded PBCA nanoparticles were confirmed to be in nanoscale with the drug entrapment efficiency of 23% and controlled drug release profile, in which only 9% of the loaded drug was released after 48 h. The nanoparticles caused an increase in the cytotoxicity effects of cisplatin against renal cell adenocarcinoma cells (ACHN) (2.3-fold) and considerably decreased blood urea nitrogen and creatinine concentrations when compared to the standard cisplatin (1.6-fold and 1.5-fold, respectively). The nanoformulation also caused an increase in the therapeutic effects of cisplatin by 1.8-fold, in which a reduction in the mean tumor size was seen (3.5 mm vs. 6.5 mm) when compared to the standard cisplatin receiver rats. Overall, cisplatin-loaded PBCA nanoparticles can be considered as a promising drug candidate for the treatment of kidney cancer due to its potency to reduce the side effects of cisplatin and its toxicity and therapeutic effects on cancer-bearing Wistar rats.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1310
Author(s):  
Muhammad Abdur Rahim ◽  
Asadullah Madni ◽  
Nayab Tahir ◽  
Nasrullah Jan ◽  
Hassan Shah ◽  
...  

The current study is aimed to fabricate doxorubicin (Dox) loaded mild temperature responsive liposomes (MTLs) by thin film hydration technique for enhanced in vitro and in vivo anticancer efficacy against hepatocellular carcinoma. The aforementioned Dox loaded MTLs were developed and optimized with extrusion and drug loading techniques. The optimized MTLs were in optimum size range (118.20 ± 2.81–187.13 ± 4.15 nm), colloidal stability (−13.27 ± 0.04 to −32.34 ± 0.15 mV), and enhanced entrapment of Dox (28.71 ± 2.01–79.24 ± 2.16). Furthermore, the optimized formulation (MTL1-E(AL)) embodied improved physicochemical stability deducted by Fourier transform infra-red (FTIR) spectroscopy and mild hyperthermia-based phase transition demonstrated from differential scanning calorimetry (DSC). An in vitro drug release study revealed mild hyperthermia assisted rapid in vitro Dox release from MTLs-E(AL) (T100% ≈ 1 h) by Korsmeyer–Peppas model based Fickian diffusion (n < 0.45). Likewise, an in vitro cytotoxicity study and lower IC50 values also symbolized mild hyperthermia (40.2 °C) based quick and improved cytotoxicity of MTL1-E(AL) in HepG2 and MCF-7 cells than Dox. The fluorescence microscopy also represented enhanced cellular internalization of MTL1-E(AL) at mild hyperthermia compared to the normothermia (37.2 °C). In addition, an in vivo animal study portrayed the safety, improved anticancer efficacy and healing of hepatocellular carcinoma (HCC) through MTL1-E(AL). In brief, the Dox loaded MTLs could be utilized as safe and effective therapeutic strategy against HCC.


2018 ◽  
Vol 24 (15) ◽  
pp. 1639-1651 ◽  
Author(s):  
Xian-ling Qian ◽  
Jun Li ◽  
Ran Wei ◽  
Hui Lin ◽  
Li-xia Xiong

Background: Anticancer chemotherapeutics have a lot of problems via conventional Drug Delivery Systems (DDSs), including non-specificity, burst release, severe side-effects, and damage to normal cells. Owing to its potential to circumventing these problems, nanotechnology has gained increasing attention in targeted tumor therapy. Chemotherapeutic drugs or genes encapsulated in nanoparticles could be used to target therapies to the tumor site in three ways: “passive”, “active”, and “smart” targeting. Objective: To summarize the mechanisms of various internal and external “smart” stimulating factors on the basis of findings from in vivo and in vitro studies. Method: A thorough search of PubMed was conducted in order to identify the majority of trials, studies and novel articles related to the subject. Results: Activated by internal triggering factors (pH, redox, enzyme, hypoxia, etc.) or external triggering factors (temperature, light of different wavelengths, ultrasound, magnetic fields, etc.), “smart” DDSs exhibit targeted delivery to the tumor site, and controlled release of chemotherapeutic drugs or genes. Conclusion: In this review article, we summarize and classify the internal and external triggering mechanism of “smart” nanoparticle-based DDSs in targeted tumor therapy, and the most recent research advances are illustrated for better understanding.


2020 ◽  
Vol 26 (45) ◽  
pp. 5783-5792
Author(s):  
Kholood Abid Janjua ◽  
Adeeb Shehzad ◽  
Raheem Shahzad ◽  
Salman Ul Islam ◽  
Mazhar Ul Islam

There is compelling evidence that drug molecules isolated from natural sources are hindered by low systemic bioavailability, poor absorption, and rapid elimination from the human body. Novel approaches are urgently needed that could enhance the retention time as well as the efficacy of natural products in the body. Among the various adopted approaches to meet this ever-increasing demand, nanoformulations show the most fascinating way of improving the bioavailability of dietary phytochemicals through modifying their pharmacokinetics and pharmacodynamics. Curcumin, a yellowish pigment isolated from dried ground rhizomes of turmeric, exhibits tremendous pharmacological effects, including anticancer activities. Several in vitro and in vivo studies have shown that curcumin mediates anticancer effects through the modulation (upregulation and/or downregulations) of several intracellular signaling pathways both at protein and mRNA levels. Scientists have introduced multiple modern techniques and novel dosage forms for enhancing the delivery, bioavailability, and efficacy of curcumin in the treatment of various malignancies. These novel dosage forms include nanoparticles, liposomes, micelles, phospholipids, and curcumin-encapsulated polymer nanoparticles. Nanocurcumin has shown improved anticancer effects compared to conventional curcumin formulations. This review discusses the underlying molecular mechanism of various nanoformulations of curcumin for the treatment of different cancers. We hope that this study will make a road map for preclinical and clinical investigations of cancer and recommend nano curcumin as a drug of choice for cancer therapy.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 498
Author(s):  
Mariaevelina Alfieri ◽  
Antonietta Leone ◽  
Alfredo Ambrosone

Plants produce different types of nano and micro-sized vesicles. Observed for the first time in the 60s, plant nano and microvesicles (PDVs) and their biological role have been inexplicably under investigated for a long time. Proteomic and metabolomic approaches revealed that PDVs carry numerous proteins with antifungal and antimicrobial activity, as well as bioactive metabolites with high pharmaceutical interest. PDVs have also been shown to be also involved in the intercellular transfer of small non-coding RNAs such as microRNAs, suggesting fascinating mechanisms of long-distance gene regulation and horizontal transfer of regulatory RNAs and inter-kingdom communications. High loading capacity, intrinsic biological activities, biocompatibility, and easy permeabilization in cell compartments make plant-derived vesicles excellent natural or bioengineered nanotools for biomedical applications. Growing evidence indicates that PDVs may exert anti-inflammatory, anti-oxidant, and anticancer activities in different in vitro and in vivo models. In addition, clinical trials are currently in progress to test the effectiveness of plant EVs in reducing insulin resistance and in preventing side effects of chemotherapy treatments. In this review, we concisely introduce PDVs, discuss shortly their most important biological and physiological roles in plants and provide clues on the use and the bioengineering of plant nano and microvesicles to develop innovative therapeutic tools in nanomedicine, able to encompass the current drawbacks in the delivery systems in nutraceutical and pharmaceutical technology. Finally, we predict that the advent of intense research efforts on PDVs may disclose new frontiers in plant biotechnology applied to nanomedicine.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zehua Zhang ◽  
Fei Dai ◽  
Fei Luo ◽  
Wenjie Wu ◽  
Shuai Zhang ◽  
...  

AbstractOsteosarcoma is a malignant osteoblastic tumor that can gravely endanger the lives and health of children and adolescents. Therefore, there is an urgent need to explore new biomarkers for osteosarcoma and determine new targeted therapies to improve the efficacy of osteosarcoma treatment. Diaphanous related formin 3 (DIAPH3) promotes tumorigenesis in hepatocellular carcinoma and lung adenocarcinoma, suggesting that DIAPH3 may be a target for tumor therapy. To date, there have been no reports on the function of DIAPH3 in osteosarcoma. DIAPH3 protein expression in osteosarcoma tissues and healthy bone tissues adjacent to cancer cells was examined by immunohistochemical staining. DIAPH3 mRNA expression correlates with overall survival and reduced disease-free survival. DIAPH3 protein is upregulated in osteosarcoma tissues, and its expression is significantly associated with tumor size, tumor stage, node metastasis, and distant metastasis. Functional in vitro experiments revealed that DIAPH3 knockdown suppressed cell proliferation and suppressed cell migration and invasion of osteosarcoma cell lines MG-63 and HOS. Functional experiments demonstrated that DIAPH3 knockdown inhibited subcutaneous tumor growth and lung metastasis in vivo. In conclusion, DIAPH3 expression can predict the clinical outcome of osteosarcoma. In addition, DIAPH3 is involved in the proliferation and metastasis of osteosarcoma, and as such, DIAPH3 may be a potential therapeutic target for osteosarcoma.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1210
Author(s):  
Xieguo Yan ◽  
Shiqiang Wang ◽  
Kaoxiang Sun

Schizophrenia, a psychiatric disorder, requires long-term treatment; however, large fluctuations in blood drug concentration increase the risk of adverse reactions. We prepared a long-term risperidone (RIS) implantation system that can stabilize RIS release and established in-vitro and in-vivo evaluation systems. Cumulative release, drug loading, and entrapment efficiency were used as evaluation indicators to evaluate the effects of different pore formers, polymer ratios, porogen concentrations, and oil–water ratios on a RIS implant (RIS-IM). We also built a mathematical model to identify the optimized formulation by stepwise regression. We also assessed the crystalline changes, residual solvents, solubility and stability after sterilization, in-vivo polymer degradation, pharmacokinetics, and tissue inflammation in the case of the optimized formulation. The surface of the optimized RIS microspheres was small and hollow with 134.4 ± 3.5 µm particle size, 1.60 SPAN, 46.7% ± 2.3% implant drug loading, and 93.4% entrapment efficiency. The in-vitro dissolution behavior of RIS-IM had zero-order kinetics and stable blood concentration; no lag time was released for over three months. Furthermore, the RIS-IM was not only non-irritating to tissues but also had good biocompatibility and product stability. Long-acting RIS-IMs with microspheres and film coatings can provide a new avenue for treating schizophrenia.


Sign in / Sign up

Export Citation Format

Share Document