scholarly journals Preparation, Characterization, and Evaluation of Cisplatin-Loaded Polybutylcyanoacrylate Nanoparticles with Improved In Vitro and In Vivo Anticancer Activities

2020 ◽  
Vol 13 (3) ◽  
pp. 44 ◽  
Author(s):  
Mohsen Ghaferi ◽  
Samar Amari ◽  
Bhalchandra Vivek Mohrir ◽  
Aun Raza ◽  
Hasan Ebrahimi Shahmabadi ◽  
...  

This study aimed to evaluate the therapeutic efficacy of the cisplatin encapsulated into polybutylcyanoacrylate (PBCA) nanoparticles for the treatment of kidney cancer. The nanoformulation was successfully developed using the miniemulsion polymerization method and characterized in terms of size, size distribution, drug loading and encapsulation efficiencies, drug release behavior, in vitro cytotoxicity effects, in vivo toxicity, and therapeutic effects. Cisplatin-loaded PBCA nanoparticles were confirmed to be in nanoscale with the drug entrapment efficiency of 23% and controlled drug release profile, in which only 9% of the loaded drug was released after 48 h. The nanoparticles caused an increase in the cytotoxicity effects of cisplatin against renal cell adenocarcinoma cells (ACHN) (2.3-fold) and considerably decreased blood urea nitrogen and creatinine concentrations when compared to the standard cisplatin (1.6-fold and 1.5-fold, respectively). The nanoformulation also caused an increase in the therapeutic effects of cisplatin by 1.8-fold, in which a reduction in the mean tumor size was seen (3.5 mm vs. 6.5 mm) when compared to the standard cisplatin receiver rats. Overall, cisplatin-loaded PBCA nanoparticles can be considered as a promising drug candidate for the treatment of kidney cancer due to its potency to reduce the side effects of cisplatin and its toxicity and therapeutic effects on cancer-bearing Wistar rats.

2019 ◽  
Vol 20 (7) ◽  
pp. 1531 ◽  
Author(s):  
Seyed Alavi ◽  
Sitah Muflih Al Harthi ◽  
Hasan Ebrahimi Shahmabadi ◽  
Azim Akbarzadeh

This study aims to improve the cytotoxicity and potency of cisplatin-loaded polybutylcyanoacrylate (PBCA) nanoparticles (NPs) for the treatment of lung cancer through the modulation of temperature and polyethylene glycol (PEG) concentration as effective factors affecting the NPs’ properties. The NPs were synthesized using an anionic polymerization method and were characterized in terms of size, drug loading efficiency, drug release profile, cytotoxicity effects, drug efficacy, and drug side effects. In this regard, dynamic light scattering (DLS), scanning electron microscopy (SEM), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) methods, and hematoxylin and eosin (H&E) staining were used. The results showed that the size and the drug loading efficiency of the synthesized spherical NPs were 355–386 nm and 14–19%, respectively. Also, the drug release profile showed a controlled and slow drug release pattern with approximately 10% drug release over 48 h. In addition, the NPs significantly increased the cytotoxicity of the cisplatin in vitro environment by approximately 2 times and enhanced the therapeutic effects of the drug in vivo environment by increasing the survival time of lung-cancer-bearing mice by 20% compared to the standard drug receiver group. Also, the nanoformulation decreased the drug toxicity in an in vivo environment. According to the results, increasing the temperature and PEG concentration improved the properties of the drug loading efficiency, drug release profile, and cytotoxicity effect of drug-loaded NPs. Consequently, the synthesized formulation increased the survival of tumor-bearing mice and simultaneously decreased the cisplatin toxicity effects. In conclusion, the prepared nanoformulation can be considered a promising candidate for further evaluation for possible therapeutic use in the treatment of lung cancer.


2021 ◽  
Vol 09 ◽  
Author(s):  
Harshad S Kapare ◽  
Sathiyanarayanan L ◽  
Arulmozhi S ◽  
Kakasaheb Mahadik

Background: Honey bee propolis is one of the natural product reported in various traditional systems of medicines including Ayurveda. Caffeic acid phenethyl ester (CAPE) is an active constituent of propolis which is well known for its anticancer potential. The therapeutic effects of CAPE are restricted owing to its less aqueous solubility and low bioavailability. Objective: In this study CAPE loaded folic acid conjugated nanoparticle system (CLFPN) was investigated to enhance solubility, achieve sustained drug release and improved cytotoxicity of CAPE. Methods: Formulation development, characterization and optimization were carried out by design of experiment approach. In vitro and in vivo cytotoxicity study was carried out for optimized formulations. Results: Developed nanoparticles showed particle size and encapsulation efficiency of 170 ± 2 - 195 ± 3 nm and 75.66 ± 1.52 - 78.80 ± 1.25 % respectively. Optimized formulation CLFPN showed sustained drug release over a period of 42 h. GI50 concentration was decreased by 46.09% for formulation as compared to CAPE in MCF-7 cells indicating targeting effect of CLFPN. An improved in vitro cytotoxic effect was reflected in in-vivo Daltons Ascites Lymphoma model by reducing tumor cells count. Conclusion: The desired nanoparticle characteristic with improved in vivo and in vitro cytotoxicity was shown by developed formulation. Thus it can be further investigated for biomedical applications.


Author(s):  
Marwa H. Abdallah ◽  
Amr S. Abu Lila ◽  
Md. Khalid Anwer ◽  
El-Sayed Khafagy ◽  
Muqtader Mohammad ◽  
...  

The present work was aimed to develop a transferosomal gel of ibuprofen (IBU) for the amelioration of psoriasis like inflammation. Three formulation of IBU loaded transferosomes (TFs1-TFs3) were prepared using different proportions of lipid (phospholipon 90H) and surfactant (tween 80) and further evaluated for vesicle size, zeta potential (ZP), entrapment efficiency and in vitro drug release. The IBU loaded transferosomes (TFs2) was optimized with vesicle size (217±8.4 nm), PDI (0.102), ZP (-31.5±4.3 mV), entrapment efficiency (88.4±6.9%) and drug loading (44.2±2.9%). Further, the optimized IBU loaded transferosomes (TFs2) was incorporated into 1% carbopol 934 gel base and characterized for homogeneity, extrudability, viscosity and drug content. The in vivo pharmacodynamic study of gel exhibited reduction in psoriasis like inflammation in mice. The ibuprofen loaded transferosomal gel was successfully developed and has shown the potential to be a new therapy against psoriasis like inflammation.


2021 ◽  
Vol 16 (7) ◽  
pp. 1029-1036
Author(s):  
Hongzhu Wang ◽  
Mengxun Chen ◽  
Liping Song ◽  
Youju Huang

A key challenge for nanoparticles-based drug delivery system is to achieve manageable drug release in tumour cell. In this study, a versatile system combining photothermal therapy and controllable drug release for tumour cells using temperature-sensitive block copolymer coupled Au NRs@SiO2 is reported. While the Au NRs serve as hyperthermal agent and the mesoporous silica was used to improve the drug loading and decrease biotoxicity. The block copolymer acted as “gatekeeper” to regulate the release of model drug (Doxorubicin hydrochloride, DOX). Through in vivo and in vitro experiments, we achieved the truly controllable drug release and photothermal therapy with the collaborative effect of the three constituents of the nanocomposites. The reported nanocomposites pave the way to high-performance controllable drug release and photothermal therapy system.


Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 718 ◽  
Author(s):  
Marta G. Fuster ◽  
Guzmán Carissimi ◽  
Mercedes G. Montalbán ◽  
Gloria Víllora

Naringenin (NAR), a flavonoid present in a variety of fruits, vegetables and herbs, exhibits a wide range of pharmacological effects, including anticancer activity. Nevertheless, its application in cancer therapy is limited due to its low bioavailability at the tumour site because of its poor solubility in water and slow dissolution rate. To improve the therapeutic efficacy of NAR, emergent research is looking into using nanocarriers. Silk fibroin (SF), from the Bombyx mori silkworm, is a biocompatible and biodegradable polymer with excellent mechanical properties and an amphiphilic chemistry that make it a promising candidate as a controlled release drug system. The aim of this work is to synthesize naringenin-loaded silk fibroin nanoparticles (NAR-SFNs) by dissolving the SF in the ionic liquid 1-ethyl-3-methylimidazolium acetate, using high-power ultrasounds and rapid desolvation in methanol followed by the adsorption of NAR. The NAR-SFNs were characterized by dynamic light scattering, Fourier transform infrared spectroscopy and thermogravimetric analysis. The drug loading content and encapsulation efficiency were calculated. The drug release profile best fitted a first order equation. The cytotoxicity effects of free NAR, bare silk fibroin nanoparticles (SFNs) and NAR-SFNs were assessed on HeLa and EA.hy926 cells via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The results demonstrated the higher in vitro anticancer potential of synthesized NAR-SFNs than that of free NAR in HeLa cancer cells.


2018 ◽  
Vol 6 (7) ◽  
pp. 1035-1043 ◽  
Author(s):  
Jian He ◽  
Lisha Ai ◽  
Xin Liu ◽  
Hao Huang ◽  
Yuebin Li ◽  
...  

The NIR-laser-driven plasmonic photothermal and sustained drug release behavior of CuS–PTX/SiO2 nanocapsules show great synergistic chemo-photothermal therapeutic effects on cancer cells in vitro and in vivo.


2019 ◽  
Vol 11 (11) ◽  
pp. 1522-1530
Author(s):  
Mahwish Kamran ◽  
Mir Azam Khan ◽  
Muhammad Shafique ◽  
Maqsood ur Rehman ◽  
Waqar Ahmed ◽  
...  

Atorvastatin is an extensively used lipid lowering agent. But the vital issue associated with it is low oral bioavailability (12%) owing to poor aqueous solubility. To overcome this tribulation, binary solid lipid nano suspension of Atorvastatin (ATO) was formulated by solvent diffusion method. The combination of stearic acid and oleic acid was utilized as a lipid carrier with Tween-80 (surfactant) along with Polyvinylpyrrolidone (co-surfactant). Optimized nano formulation was prepared by changing the formulation variables. Optimized nano suspension (ATO-4) represented particle size 228.3 ± 2.1 nm and polydispersity index (PDI) 0.225 ± 0.02 with zeta potential (ZP) – 33.6 ± 0.02 mV. Encapsulation efficiency along with drug loading capacity was 88.3 ± 2.5% and 4.9 ± 0.14% respectively. Scanning electron microscopic (SEM) analysis exposed spherical shaped amorphous particles. Differential scanning calorimetry (DSC) as well as X-ray powder diffraction (P-XRD) established reduction in drug's crystalline state. Fourier transform infrared (FTIR) spectroscopy exposed no interaction amongst the drug and formulation contents. In-vitro studies revealed sustained pattern of drug release. Stability studies confirmed refrigerated temperature as most suitable for storage of binary solid lipid nano suspension. Plasma concentration versus time curve ascertained 2.78-fold increase in oral bioavailability of ATO nano suspension compared to the marketed product (Lipitor®). Findings proposed desired improvement in oral bioavailability of ATO nano suspension with sustained drug release profile. Thus, binary solid lipid nano suspension could be utilized as an advanced drug delivery system for oral deliverance of hydrophobic drugs.


2005 ◽  
Vol 04 (05n06) ◽  
pp. 855-861 ◽  
Author(s):  
MARTIN GARNETT

The use of nanosized materials changes the way in which drugs are handled by the body and offers opportunities to improve drug delivery. The physiological mechanisms controlling the distribution of nanosized materials (enhanced permeability and retention effect, cellular uptake pathways and opsonisation/elimination of nanoparticles) are described. Two different nanosized drug delivery systems are considered; drug delivery and DNA delivery. The deficiencies of currently available biodegradable polymers for preparation of drug containing nanoparticles are mainly the amount of drug that can be incorporated and the rapid rate of drug release. The development of new biodegradable polymers which can interact with the drug and so significantly increase drug loading and decrease the rate of drug release are outlined. DNA delivery necessitates overcoming a variety of biological barriers. We are developing polyelectrolyte complexes of DNA with cationic polyamidoamines (PAA) as a delivery system. Complexing PAA with DNA results in good transfection of cells in vitro. However, in vivo, a more complex arrangement of PAA, Polyethylene glycol-PAA copolymers, DNA and the use of ligands will be required. Despite these efforts, further developments will be needed in nanotechnology for both drug and DNA nanoparticle delivery systems to achieve our clinical objectives.


2020 ◽  
Vol 27 (6) ◽  
pp. 983-996 ◽  
Author(s):  
Md. Asaduzzaman Khan ◽  
Mousumi Tania

Background: Cordycepin is a nucleotide analogue from Cordyceps mushrooms, which occupies a notable place in traditional medicine. Objective: In this review article, we have discussed the recent findings on the molecular aspects of cordycepin interactions with its recognized cellular targets, and possible mechanisms of its anticancer activity. Methods: We have explored databases like pubmed, google scholar, scopus and web of science for the update information on cordycepin and mechanisms of its anticancer activity, and reviewed in this study. Results: Cordycepin has been widely recognized for its therapeutic potential against many types of cancers by various mechanisms. More specifically, cordycepin can induce apoptosis, resist cell cycle and cause DNA damage in cancer cells, and thus kill or control cancer cell growth. Also cordycepin can induce autophagy and modulate immune system. Furthermore, cordycepin also inhibits tumor metastasis. Although many success stories of cordycepin in anticancer research in vitro and in animal model, and there is no successful clinical trial yet. Conclusion: Ongoing research studies have reported highly potential anticancer activities of cordycepin with numerous molecular mechanisms. The in vitro and in vivo success of cordycepin in anticancer research might influence the clinical trials of cordycepin, and this molecule might be used for development of future cancer drug.


2020 ◽  
Vol 26 (44) ◽  
pp. 5755-5763
Author(s):  
Kaleem Ullah ◽  
Shujaat Ali Khan ◽  
Muhammad Sohail ◽  
Abdul Mannan ◽  
Ghulam Murtaza

Background: Oxaliplatin (OXP), a 3rd generation platinum compound, which causes severe side effects due to; impulse high concentration in the bloodstream thereby exposing healthy cells at a high ratio, nonspecific delivery at the target site and non-compliance is administered intravenously. Objective: The project was aimed at the development, characterization, and in-vitro and in-vivo evaluation of pHresponsive hydrogels for oral administration of OXP. Methods: Hydrogel formulations were synthesized through a free radical polymerization technique followed by brief characterization using various techniques. The hydrogels were investigated for various in-vitro studies such as sol-gel, drug loading, swelling, drug release, and MTT-assay. While in-vivo studies such as oral tolerability, histopathology, and hematology studies were performed on rabbits. A simple and sensitive HPLC-UV method was optimized and the comparative pharmacokinetic study was performed in rabbits using OXP-oral solution and OXP-loaded hydrogels. Results: In-vitro characterization confirmed that the reactant was successfully crosslinked to form thermally stable hydrogels with decreased crystallinity and rough surface. Swelling and drug release showed that hydrogels were more responsive to basic pH (6.8 and 7.4) in comparison with pH 1.2. The blank hydrogels were cytocompatible as more than 95% of the cells were viable while free OXP and OXP-loaded hydrogels displayed dosedependent cytotoxic effect. In-vivo studies confirmed that chitosan and gelatin hydrogel suspension was well tolerable up to 3800 mg/kg and 4000 mg/kg of body weight, respectively. Hematology and serum chemistry reports were well within the range suggesting normal liver and kidney functions. Similarly, histopathology slides of rabbit vital organs were also found normal without causing any histopathological change. Conclusion: HPLC-UV method was successfully optimized for OXP detection in oral solution and hydrogels administered to rabbits. A significant difference was found among various pharmacokinetic parameters by comparing the two groups including half-life (t1/2), tmax, Cmax, AUCtot MRT, Vz, and Lz.


Sign in / Sign up

Export Citation Format

Share Document