Design for Boost DC-DC Converter Controller Based on State-Space Average Method

2014 ◽  
Vol 945-949 ◽  
pp. 2867-2870
Author(s):  
Shi Su ◽  
Jia Quan Yang ◽  
Jing Xi Zou ◽  
Wen Bin Zhang

In the process of designing high performance switch power, need to establish the accurate mathematical model of converter. The DC/DC converter generally has the characteristics of nonlinear, multimodal, time-varying, so need to use new methods to study it. The work of this paper aimed at non isolated DC / DC converter, established the mathematical model of Boost converter circuit by using the state space average method. Then design the closed-loop PI controller based on the Boost converter model, the closed-loop system has good static and dynamic performance, to meet the requirements of use.

Author(s):  
Ana Momčilović ◽  
Gordana Stefanović ◽  
Predrag Rajković ◽  
Biljana Milutinović ◽  
Dragiša Savić

Organic waste represents a challenging type of waste for implementation in the flows of a circular economy.  The main idea of the paper is the assessment of the inclusion possibility of different types of organic waste generated in one area into the flows of the circular economy. For this purpose, a mathematical model was developed and applied. Based on the mathematical model, the optimum mixing ratio of the several organic waste fractions, which will be subjected to the anaerobic digestion treatment and composting, is determined. Developed scenarios are based on the organic waste types and quantities available in the considered area. In each of the scenarios, process products, in the form of biogas and compost, are introduced into the flows of the circular economy. Based on the inputs and outputs in developed scenarios, the efficiency of the circular economy for each scenario is determined.


2012 ◽  
Vol 150 ◽  
pp. 240-244
Author(s):  
Kun Yang ◽  
Guo Qing Wu ◽  
Xu Dong Zhang

The transfer function of the BUCK converter is proposed by using the state-space average method. The lead-lag network is used to optimize the stability of the closed-loop BUCK system. And the stability of the system has been greatly improved. At last the simulation model of the system is founded by using the Matlab software. Compared with the results of the simulation of open-loop and closed-loop system, the conclusion can be reached that the stability of the after- compensator system is greatly improved.


2013 ◽  
Vol 652-654 ◽  
pp. 2153-2158
Author(s):  
Wu Ji Jiang ◽  
Jing Wei

Controlling the tooth errors induced by the variation of diameter of grinding wheel is the key problem in the process of ZC1 worm grinding. In this paper, the influence of tooth errors by d1, m and z1 as the grinding wheel diameter changes are analyzed based on the mathematical model of the grinding process. A new mathematical model and truing principle for the grinding wheel of ZC1 worm is presented. The shape grinding wheel truing of ZC1 worm is carried out according to the model. The validity and feasibility of the mathematical model is proved by case studies. The mathematical model presented in this paper provides a new method for reducing the tooth errors of ZC1 worm and it can meet the high-performance and high-precision requirements of ZC1 worm grinding.


2013 ◽  
Vol 436 ◽  
pp. 166-173
Author(s):  
A. Mihaela Mîţiu ◽  
Daniel Constantin Comeagă ◽  
Octavian G. Donţu

In this paper are presented some aspects of transmissibility control of mechanical systems with 1 DOF so that the effects of vibration on their action to be minimized. Some technical solutions that can be used for this purpose is analyzed. Starting from the mathematical model of an electro-mechanical system with 1 DOF, are identified the parameters which influence the effectiveness of the transmissibility control system using an electrodynamic actuator who work in "closed loop".


2018 ◽  
Vol 151 ◽  
pp. 04008
Author(s):  
Rouzbeh Moradi ◽  
Alireza Alikhani ◽  
Mohsen Fathi Jegarkandi

Reference trajectory management is a method to modify reference trajectories for the faulty system. The modified reference trajectories define new maneuvers for the system to retain its pre-fault dynamic performance. Controller reconfiguration is another method to handle faults in the system, for instance by adjusting the controller parameters (coefficients). Both of these two methods have been considered in the literature and are proven to be capable of handling various faults. However, the comparison of these two methods has not been considered sufficiently. In this paper, a controller reconfiguration mechanism and a reference trajectory management are proposed for the spacecraft attitude fault tolerant control problem. Then, these two methods are compared under the same conditions, and it is shown that the proposed controller reconfiguration has better performance than the proposed reference trajectory management. The reason is that the controller reconfiguration has more variables to modify the closed-loop system behavior.


2014 ◽  
Vol 551 ◽  
pp. 337-343
Author(s):  
Hui Chen ◽  
Yong Ling Fu ◽  
Juan Chen ◽  
He Song Liu

With the development of the advanced precision-guided missile and anti-missile system, high precision, high penetration ability and Low energy consumption have become an important direction for the missile. A new missile electro-hydraulic actuation system with dual independent closed-loop is put forward with the trend of high performance and energy-saving, and then the operating principle and process are discussed. Finally the accurate mathematical model is established, and the influence of the different basic pressure on the dynamic performance is analyzed. The simulation results show that the new proposed scheme has made great improvements in reducing the zero-control current of the system, but the efficiency and performance of the actuation system should be considered integrated due to the decrease of the dynamic performance, so it is practical for the future development of the missile electro-hydraulic actuation system.


Author(s):  
Julián Andres Gómez Gómez ◽  
Camilo E. Moncada Guayazán ◽  
Sebastián Roa Prada ◽  
Hernando Gonzalez Acevedo

Abstract Gimbals are mechatronic systems well known for their use in the stabilization of cameras which are under the effect of sudden movements. Gimbals help keeping cameras at previously defined fixed orientations, so that the captured images have the highest quality. This paper focuses on the design of a Linear Quadratic Gaussian, LQG, controller, based on the physical modeling of a commercial Gimbal with two degrees of freedom (2DOF), which is used for first-person applications in unmanned aerial vehicle (UAV). This approach is proposed to make a more realistic representation of the system under study, since it guarantees high accuracy in the simulation of the dynamic response, as compared to the prediction of the mathematical model of the same system. The development of the model starts by sectioning the Gimbal into a series of interconnected links. Subsequently, a fixed reference system is assigned to each link body and the corresponding homogeneous transformation matrices are established, which will allow the calculation of the orientation of each link and the displacement of their centers of mass. Once the total kinetic and potential energy of the mechanical components are obtained, Lagrange’s method is utilized to establish the mathematical model of the mechanical structure of the Gimbal. The equations of motion of the system are then expressed in state space form, with two inputs, two outputs and four states, where the inputs are the torques produced by each one of the motors, the outputs are the orientation of the first two links, and the states are the aforementioned orientations along with their time derivatives. The state space model was implemented in MATLAB’s Simulink environment to compare its prediction of the transient response with the prediction obtained with the representation of the same system using MATLAB’s SimMechanics physical modelling interface. The mathematical model of each one of the three-phase Brushless DC motors is also expressed in state space form, where the three inputs of each motor model are the voltages of the corresponding motor phases, its two outputs are the angular position and angular velocity, and its four states are the currents in two of the phases, the orientation of the motor shaft and its rate of change. This model is experimentally validated by performing a switching sequence in both the simulation model and the physical system and observing that the transient response of the angular position of the motor shaft is in accordance with the theoretical model. The control system design process starts with the interconnection of the models of the mechanical components and the models of the Brushless DC Motor, using their corresponding state space representations. The resulting model features six inputs, two outputs and eight states. The inputs are the voltages in each phase of the two motors in the Gimbal, the outputs are the angular positions of the first two links, and the states are the currents in two of the phases for each motor and the orientations of the first two links, along with their corresponding time derivatives. An optimal LQG control system is designed using MATLAB’s dlqr and Kalman functions, which calculate the gains for the control system and the gains for the states estimated by the observer. The external excitation in each of the phases is carried out by pulse width modulation. Finally, the transient response of the overall system is evaluated for different reference points. The simulation results show very good agreement with the experimental measurements.


Author(s):  
Mounir Hammouche ◽  
Philippe Lutz ◽  
Micky Rakotondrabe

The problem of robust and optimal output feedback design for interval state-space systems is addressed in this paper. Indeed, an algorithm based on set inversion via interval analysis (SIVIA) combined with interval eigenvalues computation and eigenvalues clustering techniques is proposed to seek for a set of robust gains. This recursive SIVIA-based algorithm allows to approximate with subpaving the set solutions [K] that satisfy the inclusion of the eigenvalues of the closed-loop system in a desired region in the complex plane. Moreover, the LQ tracker design is employed to find from the set solutions [K] the optimal solution that minimizes the inputs/outputs energy and ensures the best behaviors of the closed-loop system. Finally, the effectiveness of the algorithm is illustrated by a real experimentation on a piezoelectric tube actuator.


Author(s):  
Reza Taghipour ◽  
Tristan Perez ◽  
Torgeir Moan

This article deals with time-domain hydroelastic analysis of a marine structure. The convolution terms in the mathematical model are replaced by their alternative state-space representations whose parameters are obtained by using the realization theory. The mathematical model is validated by comparison to experimental results of a very flexible barge. Two types of time-domain simulations are performed: dynamic response of the initially inert structure to incident regular waves and transient response of the structure after it is released from a displaced condition in still water. The accuracy and the efficiency of the simulations based on the state-space model representations are compared to those that integrate the convolutions.


2019 ◽  
Vol 8 (2S11) ◽  
pp. 3327-3337

Renewable power generation and enabling of AC Microgrids are fundamentally changing the traditional power grid. Microgrid has revealed its promising potential as an active subsystem of the modern power grid. This paper reviews and analyses ways to boost and regulate the voltage of the AC-Micro-Grid-System(QBCIMGS) for improving the microgrid power quality. “A QBC(Quadratic-boost-converter-inverter based AC-Micro-Grid-System(QBCIMGS) is conferred-here”. This work recommends-QBC(quadratic-boost-converter) between rectifier &inverter. This paper investigates open loop and closed loop response of Quadratic boost-converter based AC-Micro-Grid-System(MGS) with Proportional resonant(PR) & Hysteresis-controller(HC). The mat lab outcome attained illustrates a developed dynamic-performance by using Hysteresiscontrolled AC-Micro-Grid-System(MGS)


Sign in / Sign up

Export Citation Format

Share Document