scholarly journals Dentine sialophosphoprotein signal in dentineogenesis and dentine regeneration

2021 ◽  
Vol 42 ◽  
pp. 43-62
Author(s):  
MM Liu ◽  
WT Li ◽  
XM Xia ◽  
F Wang ◽  
M MacDougall ◽  
...  

Dentineogenesis starts on odontoblasts, which synthesise and secrete non-collagenous proteins (NCPs) and collagen. When dentine is injured, dental pulp progenitors/mesenchymal stem cells (MSCs) can migrate to the injured area, differentiate into odontoblasts and facilitate formation of reactionary dentine. Dental pulp progenitor cell/MSC differentiation is controlled at given niches. Among dental NCPs, dentine sialophosphoprotein (DSPP) is a member of the small integrin-binding ligand N-linked glycoprotein (SIBLING) family, whose members share common biochemical characteristics such as an Arg-Gly-Asp (RGD) motif. DSPP expression is cell- and tissue-specific and highly seen in odontoblasts and dentine. DSPP mutations cause hereditary dentine diseases. DSPP is catalysed into dentine glycoprotein (DGP)/sialoprotein (DSP) and phosphoprotein (DPP) by proteolysis. DSP is further processed towards active molecules. DPP contains an RGD motif and abundant Ser-Asp/Asp-Ser repeat regions. DPP-RGD motif binds to integrin αVβ3 and activates intracellular signalling via mitogen-activated protein kinase (MAPK) and focal adhesion kinase (FAK)-ERK pathways. Unlike other SIBLING proteins, DPP lacks the RGD motif in some species. However, DPP Ser-Asp/Asp-Ser repeat regions bind to calcium-phosphate deposits and promote hydroxyapatite crystal growth and mineralisation via calmodulin-dependent protein kinase II (CaMKII) cascades. DSP lacks the RGD site but contains signal peptides. The tripeptides of the signal domains interact with cargo receptors within the endoplasmic reticulum that facilitate transport of DSPP from the endoplasmic reticulum to the extracellular matrix. Furthermore, the middle- and COOH-terminal regions of DSP bind to cellular membrane receptors, integrin β6 and occludin, inducing cell differentiation. The present review may shed light on DSPP roles during odontogenesis.

2005 ◽  
Vol 103 (3) ◽  
pp. 532-539 ◽  
Author(s):  
Philip E. Bickler ◽  
Xinhua Zhan ◽  
Christian S. Fahlman

Background Isoflurane preconditions neurons to improve tolerance of subsequent ischemia in both intact animal models and in in vitro preparations. The mechanisms for this protection remain largely undefined. Because isoflurane increases intracellular Ca2+ concentrations and Ca2+ is involved in many processes related to preconditioning, the authors hypothesized that isoflurane preconditions neurons via Ca2+-dependent processes involving the Ca2+- binding protein calmodulin and the mitogen-activated protein kinase-ERK pathway. Methods The authors used a preconditioning model in which organotypic cultures of rat hippocampus were exposed to 0.5-1.5% isoflurane for a 2-h period 24 h before an ischemia-like injury of oxygen-glucose deprivation. Survival of CA1, CA3, and dentate neurons was assessed 48 later, along with interval measurements of intracellular Ca2+ concentration (fura-2 fluorescence microscopy in CA1 neurons), mitogen-activated protein kinase p42/44, and the survival associated proteins Akt and GSK-3beta (in situ immunostaining and Western blots). Results Preconditioning with 0.5-1.5% isoflurane decreased neuron death in CA1 and CA3 regions of hippocampal slice cultures after oxygen-glucose deprivation. The preconditioning period was associated with an increase in basal intracellular Ca2+ concentration of 7-15%, which involved Ca2+ release from inositol triphosphate-sensitive stores in the endoplasmic reticulum, and transient phosphorylation of mitogen-activated protein kinase p42/44 and the survival-associated proteins Akt and GSK-3beta. Preconditioning protection was eliminated by the mitogen-activated extracellular kinase inhibitor U0126, which prevented phosphorylation of p44 during preconditioning, and by calmidazolium, which antagonizes the effects of Ca2+-bound calmodulin. Conclusions Isoflurane, at clinical concentrations, preconditions neurons in hippocampal slice cultures by mechanisms that apparently involve release of Ca2+ from the endoplasmic reticulum, transient increases in intracellular Ca2+ concentration, the Ca2+ binding protein calmodulin, and phosphorylation of the mitogen-activated protein kinase p42/44.


2013 ◽  
Vol 24 (19) ◽  
pp. 3145-3154 ◽  
Author(s):  
Xia Li ◽  
Susan Ferro-Novick ◽  
Peter Novick

Ptc1p, a type 2C protein phosphatase, is required for a late step in cortical endoplasmic reticulum (cER) inheritance in Saccharomyces cerevisiae. In ptc1Δ cells, ER tubules migrate from the mother cell and contact the bud tip, yet fail to spread around the bud cortex. This defect results from the failure to inactivate a bud tip–associated pool of the cell wall integrity mitogen-activated protein kinase, Slt2p. Here we report that the polarisome complex affects cER inheritance through its effects on Slt2p, with different components playing distinct roles: Spa2p and Pea2p are required for Slt2p retention at the bud tip, whereas Bni1p, Bud6p, and Sph1p affect the level of Slt2p activation. Depolymerization of actin relieves the ptc1Δ cER inheritance defect, suggesting that in this mutant the ER becomes trapped on the cytoskeleton. Loss of Sec3p also blocks ER inheritance, and, as in ptc1Δ cells, this block is accompanied by activation of Slt2p and is reversed by depolymerization of actin. Our results point to a common mechanism for the regulation of ER inheritance in which Slt2p activity at the bud tip controls the association of the ER with the actin-based cytoskeleton.


Sign in / Sign up

Export Citation Format

Share Document