scholarly journals Natural Gas Price Prediction Using Machine Learning

Author(s):  
Sanjana G P

Natural gas varies with season. In addition, natural gas supply, demand, storage, and imports are important indicators related to natural gas price. There are plenty of methods for analyzing and forecasting natural gas prices and machine learning is increasingly used. Machine learning algorithms can learn from historical relationships and trends in the data and make data-driven predictions or decisions. Here a new model for predicting price for natural gas by using Machine Learning concepts. Here some algorithms have been used to build the proposed model: Random Forest Regression, Linear Regression, Decision Tree, Multilinear Regression. By using the algorithm, a Flask model has been implemented and tested. The results have been discussed and a full comparison between algorithms was conducted. Random forest Regression was selected as best algorithm based on accuracy.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chinmay P. Swami ◽  
Nicholas Lenhard ◽  
Jiyeon Kang

AbstractProsthetic arms can significantly increase the upper limb function of individuals with upper limb loss, however despite the development of various multi-DoF prosthetic arms the rate of prosthesis abandonment is still high. One of the major challenges is to design a multi-DoF controller that has high precision, robustness, and intuitiveness for daily use. The present study demonstrates a novel framework for developing a controller leveraging machine learning algorithms and movement synergies to implement natural control of a 2-DoF prosthetic wrist for activities of daily living (ADL). The data was collected during ADL tasks of ten individuals with a wrist brace emulating the absence of wrist function. Using this data, the neural network classifies the movement and then random forest regression computes the desired velocity of the prosthetic wrist. The models were trained/tested with ADLs where their robustness was tested using cross-validation and holdout data sets. The proposed framework demonstrated high accuracy (F-1 score of 99% for the classifier and Pearson’s correlation of 0.98 for the regression). Additionally, the interpretable nature of random forest regression was used to verify the targeted movement synergies. The present work provides a novel and effective framework to develop an intuitive control for multi-DoF prosthetic devices.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Faizan Ullah ◽  
Qaisar Javaid ◽  
Abdu Salam ◽  
Masood Ahmad ◽  
Nadeem Sarwar ◽  
...  

Ransomware (RW) is a distinctive variety of malware that encrypts the files or locks the user’s system by keeping and taking their files hostage, which leads to huge financial losses to users. In this article, we propose a new model that extracts the novel features from the RW dataset and performs classification of the RW and benign files. The proposed model can detect a large number of RW from various families at runtime and scan the network, registry activities, and file system throughout the execution. API-call series was reutilized to represent the behavior-based features of RW. The technique extracts fourteen-feature vector at runtime and analyzes it by applying online machine learning algorithms to predict the RW. To validate the effectiveness and scalability, we test 78550 recent malign and benign RW and compare with the random forest and AdaBoost, and the testing accuracy is extended at 99.56%.


Author(s):  
Akash Dagar and Shreya Kapoor

Machine learning plays a major role from past years in image detection, spam reorganization, normal speech command, product recommendation and medical diagnosis. Present machine learning algorithm helps us in enhancing security alerts, ensuring public safety and improve medical enhancements. Due to increase in urbanization, there is an increase in demand for renting houses and purchasing houses. Therefore, to determine a more effective way to calculate house price accurately is the need of the hour. So, an effort has been made to determine the most accurate way of predicting house price by using machine learning algorithms: Multivariable Linear Regression, Decision Tree Regression and Random Forest Regression and it is determined that Multivariable Linear Regression has showed most accuracy and less error.


Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1680 ◽  
Author(s):  
Moting Su ◽  
Zongyi Zhang ◽  
Ye Zhu ◽  
Donglan Zha ◽  
Wenying Wen

Natural gas has been proposed as a solution to increase the security of energy supply and reduce environmental pollution around the world. Being able to forecast natural gas price benefits various stakeholders and has become a very valuable tool for all market participants in competitive natural gas markets. Machine learning algorithms have gradually become popular tools for natural gas price forecasting. In this paper, we investigate data-driven predictive models for natural gas price forecasting based on common machine learning tools, i.e., artificial neural networks (ANN), support vector machines (SVM), gradient boosting machines (GBM), and Gaussian process regression (GPR). We harness the method of cross-validation for model training and monthly Henry Hub natural gas spot price data from January 2001 to October 2018 for evaluation. Results show that these four machine learning methods have different performance in predicting natural gas prices. However, overall ANN reveals better prediction performance compared with SVM, GBM, and GPR.


2020 ◽  
Vol 12 (5) ◽  
pp. 41-51
Author(s):  
Shaimaa Mahmoud ◽  
◽  
Mahmoud Hussein ◽  
Arabi Keshk

Opinion mining in social networks data is considered as one of most important research areas because a large number of users interact with different topics on it. This paper discusses the problem of predicting future products rate according to users’ comments. Researchers interacted with this problem by using machine learning algorithms (e.g. Logistic Regression, Random Forest Regression, Support Vector Regression, Simple Linear Regression, Multiple Linear Regression, Polynomial Regression and Decision Tree). However, the accuracy of these techniques still needs to be improved. In this study, we introduce an approach for predicting future products rate using LR, RFR, and SVR. Our data set consists of tweets and its rate from 1:5. The main goal of our approach is improving the prediction accuracy about existing techniques. SVR can predict future product rate with a Mean Squared Error (MSE) of 0.4122, Linear Regression model predict with a Mean Squared Error of 0.4986 and Random Forest Regression can predict with a Mean Squared Error of 0.4770. This is better than the existing approaches accuracy.


Author(s):  
Inssaf El Guabassi ◽  
Zakaria Bousalem ◽  
Rim Marah ◽  
Aimad Qazdar

<p>In the 21st century, University educations are becoming a key pillar of social and economic life. It plays a major role not only in the educational process but also in the ensuring of two important things which are a prosperous career and financial security. However, predicting university admission can be especially difficult because the students are not aware of admission requirements. For that reason, the main purpose of this research work is to provide a recommender system for early predicting university admission based on four Machine Learning algorithms namely Linear Regression, Decision Tree, Support Vector Regression, and Random Forest Regression. The experimental results showed that the Random Forest Regression is the most suitable Machine Learning algorithm for predicting university admission. Also, the Cumulative Grade Point Average (CGPA) is the most important parameter that influences the chance of admission.</p>


Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 348
Author(s):  
Wojciech Panek ◽  
Tomasz Włodek

Natural gas consumption depends on many factors. Some of them, such as weather conditions or historical demand, can be accurately measured. The authors, based on the collected data, performed the modeling of temporary and future natural gas consumption by municipal consumers in one of the medium-sized cities in Poland. For this purpose, the machine learning algorithms, neural networks and two regression algorithms, MLR and Random Forest were used. Several variants of forecasting the demand for natural gas, with different lengths of the forecast horizon are presented and compared in this research. The results obtained using the MLR, Random Forest, and DNN algorithms show that for the tested input data, the best algorithm for predicting the demand for natural gas is RF. The differences in accuracy of prediction between algorithms were not significant. The research shows the differences in the impact of factors that create the demand for natural gas, as well as the accuracy of the prediction for each algorithm used, for each time horizon.


Author(s):  
Thuraiya Mohd ◽  
Syafiqah Jamil ◽  
Suraya Masrom

In the era of Industrial 4.0, many urgent issues in the industries can be effectively solved with artificial intelligence techniques, including machine learning. Designing an effective machine learning model for prediction and classification problems is an ongoing endeavor. Besides that, time and expertise are important factors that are needed to tailor the model to a specific issue, such as the green building housing issue. Green building is known as a potential approach to increase the efficiency of the building. To the best of our knowledge, there is still no implementation of machine learning model on GB valuation factors for building price prediction compared to conventional building development. This paper provides a report of an empirical study that model building price prediction based on green building and other common determinants. The experiments used five common machine learning algorithms namely Linear Regression, Decision Tree, Random Forest, Ridge and Lasso tested on a set of real building datasets that covered Kuala Lumpur District, Malaysia. The result showed that the Random Forest algorithm outperforms the other four algorithms on the tested dataset and the green building determinant has contributed some promising effects to the model.


2021 ◽  
Author(s):  
A. Mairpady ◽  
Abdel-Hamid I. Mourad ◽  
A S Mohammad Sayem Mozumder

Abstract Cartilage repair is one of the most challenging tasks for the orthopedic surgeons and researchers. The primary challenge lies on the fact that the development of the extracellular matrixes requires specialized cells known as chondrocytes which are sparse in numbers. Chondrocytes’ minimal self-renewal capacity makes it further troublesome and expensive to repair the cartilages. In designing successful substitutes for the cartilages, the selection of materials used for the scaffold fabrication plays the central role among several other important factors in order to ensure the success of the survival and proliferation of any biomaterial substitutes. Since last few decades, polymer and polymers' combination have been extensively used to fabricate such scaffolds and have shown promising results in terms of mechanical integrity and biocompatibility. In an empirical approach, the selection of the most appropriate polymer(s) for cartilage repair is an expensive and time-consuming affair, as traditionally, it requires numerous trials. Moreover, it is humanly impossible to go through the huge library of literature available on the potential polymer(s) and to correlate their physical, mechanical and biological properties that might be suitable for cartilage tissue engineering. With the advancement of machine learning, material design may experience a significant reduction in experimental time and cost. The objective of this study is to implement an inverse design approach to select the best polymer(s) or composites for cartilage repair by using the machine learning algorithms, such as random forest regression (i.e., regression trees) and the multinomial logistic regression. In these algorithms, the mechanical properties of the polymers, which are similar to the cartilages, are considered as the input and the polymer(s)/composites are the predicted output. According to the random forest regression and multinomial logistic regression, the polymer(s)/composites (i.e., the output) having the closest characteristics of the articular cartilages were found to be a composite of polycaprolactone and poly(bisphenol A carbonate) and a blend of polyethylene/polyethylene-graft-poly(maleic anhydride), respectively. These composites exhibit similar biomechanical properties of the natural cartilages and initiate only minimal immune responses in the body environment.


Sign in / Sign up

Export Citation Format

Share Document