scholarly journals “Effect of Hydroxyapatite Nanoparticles On Compressive strength and Flexural strength of Dental Composites Using Taguchi Method”

Author(s):  
Shubham Padmaker Thakur

Abstract: Several composite materials are being used in biomedical and dental field with their immense applications to repair and transform various organs in human body. Recent advances suggest that Hydroxyapatite is one of the most reliable and widely used inorganic composite in dentistry. Desirable applications of Hydroxyapatite are achieved by utilizing variety of hydroxyapatite and their composites. This study was conducted to evaluate the compressive & flexural strength. Cylindrical specimens (n=9) for compressive strength & rectangular shaped specimens (n=9) for flexural strength were made according to manufacturer’s recommendations. Dental composite is using quartz, silica, and alumina glass as filler for a long time. Taguchi optimization technique keeps the experimentation within limit giving valid product in the calculating of compressive and flexural strength optimization. The goal of the work is to detect the best combination of composite materials. Keywords: Hydroxyapatite, Compressive Strength, Flexural Strength, Taguchi’s optimization method.

Author(s):  
Akhil Sharma ◽  
Sajid Alam ◽  
Chetan Sharma ◽  
Amar Patnaik ◽  
Shiv Ranjan Kumar

Resin-based dental composites were prepared by the addition of four different weight percentages (0–9 wt% microcapsules) of silane-treated microcapsules. The resin matrix was prepared by adding 50 wt% BisGMA, 48 wt% triethylene glycol dimethylacrylate, 0.4 wt% camphorquinone, and 1.6 wt% ethyl 4 dimethyl amino benzoate, respectively. In this study, the static mechanical properties in terms of micro-hardness, compressive strength, flexural strength, and dynamic mechanical analysis, in terms of storage modulus (E′), loss modulus (E″), and Tan delta (δ) as a function of temperature were evaluated systematically as per specific standards. The mechanical results indicated that the addition of 3 wt% of microcapsules increased both the hardness and flexural strength by 38% and 6%, respectively. On the other hand, addition of 3 wt% of microcapsules on the same resin based dental composite decreased the compressive strength by 35%. The dynamic mechanical results indicated that the storage modulus, loss modulus and glass transition temperatures was initially decreased with the addition of micro-capsules from 0 to 6 wt% and increased on further increase of microcapsules up to 9 wt%. Finally, Cole–Cole plot has been drawn for identification of the nature of the proposed dental composites.


2020 ◽  
Vol 15 (3) ◽  
pp. 409-413
Author(s):  
Cheng Zhu

Abstract Cement-based materials have been widely used in bridge construction. In order to further improve their performance, this study analyzed the modification and optimization functions of nano-SiO2 materials, designed test specimens with different content of nano-SiO2 and conducted experiments on their flow performance, compression resistance, bending resistance and impermeability. The results showed that the flow performance of the materials decreased and the impermeability decreased with the increase of nano-SiO2 content. The compressive strength and flexural strength are the best when the content of nano-SiO2 is 1%. On the whole, the best content of nano-SiO2 is 1%; when the content of nano-SiO2 is 1%, all the properties of the specimens are good, which is more conducive to the construction of bridges in various complex environments. The research in this paper has made some contributions to the further application of nano-SiO2 in the optimization of building materials, which is conducive to the better development of building materials.


2007 ◽  
Vol 336-338 ◽  
pp. 1587-1589
Author(s):  
Wen Xu Li ◽  
Hua Zhao ◽  
Ying Song ◽  
Bin Su ◽  
Fu Ping Wang

Ca3(PO4)2/ZrO2 dental composite ceramics using for CAD/CAM system were prepared and the effects of weak phases on microstructures and mechanical properties were studied. The results showed that intergranular spreads happened with the increasing Ca3(PO4)2 contents due to the discontinuity of weak interfaces between Zirconia and Calcium phosphate in matrix. So the flexural strength and hardness of the Ca3(PO4)2/ZrO2 composite ceramics were decreased effectively, which improved the machinability of the composites. On the other hand, strong interfaces between Zirconias increased the integrality of the ceramic structures. ZrO2 composite Ceramics with 15% Ca3(PO4)2 were sintered at 1350°C. The flexural strength is 300.44MPa, fracture toughness is 4.36 MPam1/2, and hardness is 6.69 GPa. The cutting exponent of the Ca3(PO4)2/ZrO2 composite ceramics is obviously lower than that of the common commercial Vita Mark II and Dicor MGC ceramics, which shows good mechanical properties and machinability.


2018 ◽  
Vol 53 (23) ◽  
pp. 3217-3228 ◽  
Author(s):  
Abolfazl Mirjalili ◽  
Ali Zamanian ◽  
Seyed Mohammad Mahdi Hadavi

One of the most important aspects of dental resin composites is the ability to improve mechanical properties by adding reinforcing filler particles. TiO2 nanotubes are expected to improve the physical and mechanical properties of silica micro-filled dental composite. Therefore, TiO2 nanotubes were synthesized using an alkaline hydrothermal process and then functionalized with 3-methacryloxypropyl-trimethoxysilane. TiO2 nanotubes were characterized by scanning and transmission electron microscopies, X-ray diffraction and Fourier transform infrared spectroscopy. Different quantities of TiO2 nanotubes and silica microparticles were reinforced in bisphenol A-glycidyl methacrylate (Bis-GMA) and tri-ethylene glycol dimethacrylate to prepare dental composite samples. Thereafter, the flexural strength and modulus, compressive strength, degree of conversion of monomers, wear resistance and water sorption were utlized to examine the prepared composites. The flexural strength and wear resistance of composites with 3 wt% TiO2 nanotubes significantly increased in comparison with other composites. On the other hand, due to the stability of composite, the water sorption was decreased. Therefore, TiO2 nanotubes reinforcement could be a promising solution for the improvement of mechanical properties in dental composites.


2020 ◽  
Vol 1 (3) ◽  
pp. 72-76

Nano Fast Cement (NFC) is a nanocomposite with a short setting time for repairing root teeth canals as an alternative to Mineral Trioxide Aggregate. The downside of this new tooth restorative material is the poor workability and low compressive strength. In this study, polyvinyl alcohol (PVA), colloidal nano-silica, and hydroxyapatite nanoparticles were added to NFC to improve its physical, mechanical, and biocompatibility properties of NFC. The effects of the three additives on strength were determined. Experiments were designed based on the Taguchi method. The optimum contents of the three additives for the highest compressive strength, flexural strength were also obtained. The results showed that the most effective factor on the mechanical (compressive & flexural strength) properties of NFC is polyvinyl alcohol. Based on the Taguchi method, the optimal (highest value) of the mechanical property is obtained for PVA, nano-silica, and nano-hydroxyapatite contents of 6, .0.5, 0 Wt.%.


2021 ◽  
Vol 11 (Suppl. 1) ◽  
pp. 137-142
Author(s):  
Mehmet Gökberkkaan Demirel ◽  
Makbule Tuğba Tunçdemir

Aim: Secondary caries is an important problem in dental composite restoration, and nanoparticles are commonly added to the structures of resin composites to improve their antimicrobial properties. The aim of this study is to evaluate the mechanical properties of composite materials containing bioactive glass (BAG) and an experimental nano zinc-silica (NZS) complex. Methodology: An experimental resin composite containing 70 wt% filler was produced and used as a control sample. This experimental resin composite was then modified by adding different amounts of BAG (10%), NZS (10%), and both BAG and NZS (10% + 10%). NZS was synthesized in situ by milling zinc and silica to nanoscale level. Compressive strength and flexural strength were investigated using a universal testing machine. Data were analyzed using one-way ANOVA and the Tukey post-hoc test. Results: There were no statistically significant differences in compressive strength caused by the filler amount, but statistically significant changes were found in flexural strength. Although the addition of antimicrobial agents to resin composites reduces their physical properties, this is not a clinically unacceptable limit. Conclusion: NZS exhibits better mechanical properties than does BAG, but both materials can be used safely in restorative materials.   How to cite this article: Tunçdemir MT, Demirel MG. Mechanical properties of resin composites containing bioactive glass and experimental nano zinc-silica complex. Int Dent Res 2021;11(Suppl.1):137-42. https://doi.org/10.5577/intdentres.2021.vol11.suppl1.21   Linguistic Revision: The English in this manuscript has been checked by at least two professional editors, both native speakers of English.  


2017 ◽  
Vol 68 (1) ◽  
pp. 192-199
Author(s):  
Adrian Almasi ◽  
Anca Porumb ◽  
Angela Codruta Podariu ◽  
Liana Todor ◽  
Sergiu Alexandru Tofan ◽  
...  

The goal study is benchmarking flexural strength FS of compressive strength CS, compression diametrical DTS (diametrically tensile strenght) and Vickers hardness for two nanocomposites experimental AD1 and AD3 achieved within the Research Institute in Chemistry Raluca Ripan Cluj Napoca and for the commercial product of the Kerr Premise company �. Electron microscopy aspects pre- and post-fracturing are also shown to highlight the structure of materials and spread


2014 ◽  
Vol 1685 ◽  
Author(s):  
Tansel Uyar ◽  
Dilek Cokeliler

ABSTRACTBecause of the aesthetics, handy and low cost features, acrylic resin is the main material in denture fabrication last 40 years. The purpose of this study is to improve mechanical properties of acrylic based dental composites used in dentistry by applying nanofiber approaches. Polymethylmethacrylate (PMMA) is commonly used as a base acrylic denture material with benefits of rapid and easy handling but sometime this material can be fractured or cracked in clinical use because of the strength issues that is frequently used in restorative dentistry in recent years. A wide variety of fillers that are used to produce PMMA composites draw the attention in literature. Using PMMA composite resins with electrospun polyvinylalcohol (PVA) nanofiber fillers is our first novelty. Also the producing and using aligned electrospun fibers as a filler is our second novelty of this practice. PVA was selected as composite filler because of biocompatibility and preparing easily also has non-toxic solvent. Electrospinning system is manufactured that allows manipulation of electric field used in the application of alignment in lab scale. Various auxillary electrode systems are used for different patterns of alignment with the manufactured device and electrode systems produce fibers in different range of diameter. Scanning electron microscopy (SEM) is used for physical characterization and determined the range of fiber diameters. After the optimization of concentration step non-woven and aligned fibers are also analyzed. Non-woven fiber has no unique pattern because of the nature of electrospinning but aligned fibers has crossed lines. These produced fibers structured as layer-by-layer form with different features are used in producing PMMA dental composites with different volume ratios. In the last part of the research, PMMA dental composites are produced with aligned and formless fibers that are characterized with three-point bending test. The maximum flexural strength figure shows that fiber load by weight %0.25 and above improves the maximum. The change of flexural strength, elastic modulus values and toughness are obtained and compared with formless and aligned PVA nanofiber included composite specimens. As a result, mechanical properties of PMMA dental composites are improved with using PVA nanofibers as a filler also with the usage of aligned fibers instead of the formless ones the effects of improvement gets better with maximum values as 5.1 MPa (flexural strength), 0.8 GPa (elastic modulus), 170kJ/m3 (toughness).


Author(s):  
B. M. Culbertson ◽  
M. L. Devinev ◽  
E. C. Kao

The service performance of current dental composite materials, such as anterior and posterior restoratives and/or veneer cements, needs to be improved. As part of a comprehensive effort to find ways to improve such materials, we have launched a broad spectrum study of the physicochemical and mechanical properties of photopolymerizable or visible light cured (VLC) dental composites. The commercially available VLC materials being studied are shown in Table 1. A generic or neat resin VLC system is also being characterized by SEM and TEM, to more fully understand formulation variables and their effects on properties.At a recent dental research meeting, we reported on the differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) characterization of the materials in Table 1. It was shown by DSC and DMA that the materials are substantially undercured by commonly used VLC techniques. Post curing in an oral cavity or a dry environment at 37 to 50°C for 7 or more hours substantially enhances the cure of the materials.


Sign in / Sign up

Export Citation Format

Share Document