The Improvement of Dental Composite Properties with Electromagnetically Aligned Nanofiber

2014 ◽  
Vol 1685 ◽  
Author(s):  
Tansel Uyar ◽  
Dilek Cokeliler

ABSTRACTBecause of the aesthetics, handy and low cost features, acrylic resin is the main material in denture fabrication last 40 years. The purpose of this study is to improve mechanical properties of acrylic based dental composites used in dentistry by applying nanofiber approaches. Polymethylmethacrylate (PMMA) is commonly used as a base acrylic denture material with benefits of rapid and easy handling but sometime this material can be fractured or cracked in clinical use because of the strength issues that is frequently used in restorative dentistry in recent years. A wide variety of fillers that are used to produce PMMA composites draw the attention in literature. Using PMMA composite resins with electrospun polyvinylalcohol (PVA) nanofiber fillers is our first novelty. Also the producing and using aligned electrospun fibers as a filler is our second novelty of this practice. PVA was selected as composite filler because of biocompatibility and preparing easily also has non-toxic solvent. Electrospinning system is manufactured that allows manipulation of electric field used in the application of alignment in lab scale. Various auxillary electrode systems are used for different patterns of alignment with the manufactured device and electrode systems produce fibers in different range of diameter. Scanning electron microscopy (SEM) is used for physical characterization and determined the range of fiber diameters. After the optimization of concentration step non-woven and aligned fibers are also analyzed. Non-woven fiber has no unique pattern because of the nature of electrospinning but aligned fibers has crossed lines. These produced fibers structured as layer-by-layer form with different features are used in producing PMMA dental composites with different volume ratios. In the last part of the research, PMMA dental composites are produced with aligned and formless fibers that are characterized with three-point bending test. The maximum flexural strength figure shows that fiber load by weight %0.25 and above improves the maximum. The change of flexural strength, elastic modulus values and toughness are obtained and compared with formless and aligned PVA nanofiber included composite specimens. As a result, mechanical properties of PMMA dental composites are improved with using PVA nanofibers as a filler also with the usage of aligned fibers instead of the formless ones the effects of improvement gets better with maximum values as 5.1 MPa (flexural strength), 0.8 GPa (elastic modulus), 170kJ/m3 (toughness).

2007 ◽  
Vol 336-338 ◽  
pp. 1587-1589
Author(s):  
Wen Xu Li ◽  
Hua Zhao ◽  
Ying Song ◽  
Bin Su ◽  
Fu Ping Wang

Ca3(PO4)2/ZrO2 dental composite ceramics using for CAD/CAM system were prepared and the effects of weak phases on microstructures and mechanical properties were studied. The results showed that intergranular spreads happened with the increasing Ca3(PO4)2 contents due to the discontinuity of weak interfaces between Zirconia and Calcium phosphate in matrix. So the flexural strength and hardness of the Ca3(PO4)2/ZrO2 composite ceramics were decreased effectively, which improved the machinability of the composites. On the other hand, strong interfaces between Zirconias increased the integrality of the ceramic structures. ZrO2 composite Ceramics with 15% Ca3(PO4)2 were sintered at 1350°C. The flexural strength is 300.44MPa, fracture toughness is 4.36 MPam1/2, and hardness is 6.69 GPa. The cutting exponent of the Ca3(PO4)2/ZrO2 composite ceramics is obviously lower than that of the common commercial Vita Mark II and Dicor MGC ceramics, which shows good mechanical properties and machinability.


2020 ◽  
Vol 2 (1) ◽  
pp. 45-52
Author(s):  
Ana C. de Assunção Oliveira ◽  
Sandro Griza ◽  
Rafael R. de Moraes ◽  
André L. Faria-e-Silva

Objective:: To investigate the effect of filler content and the time spent before light-curing on mechanical properties of dual-cured cement. Methods:: Experimental dual-cured resin cements were formulated with 60, 65 or 68wt% of filler. The viscosity of experimental cement was measured using a digital viscometer. Bar-shaped specimens (25 x 2 x 2 mm) were fabricated, while the light-curing was started immediately or 5 minutes after the insertion of cement into the mold (n = 7). A three-point bending test was performed and the values of flexural strength and elastic modulus were measured. The Vickers hardness of fractured specimens was measured on the surface of the cement. Data from viscosity were submitted to oneway ANOVA, while the data from mechanical properties were analyzed by two-way ANOVA. All pair-wise comparisons were performed using Tukey’s test (α = 0.05). Results:: The experimental cement with 68wt% of filler showed the highest viscosity and those with 60wt% showed the the lowest viscosity. Irrespective of the time spent before light-curing, the cement with 65wt% of filler presented the highest values of flexural strength and elastic modulus. The addition of 60wt% of filler resulted in the lowest elastic modulus, while 68wt% of filler resulted in lowest flexural strength. Regarding the hardness, the cement with 68wt% of filler showed the highest values, while there was no difference between 60 and 65wt% of filler. Conclusion:: Filler content affected the mechanical properties of the experimental cement and this effect did not depend on the waiting time before the light-curing procedure.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Dayany da Silva Alves Maciel ◽  
Arnaldo Bonfim Caires-Filho ◽  
Marta Fernandez-Garcia ◽  
Camillo Anauate-Netto ◽  
Roberta Caroline Bruschi Alonso

The aim of this study was to evaluate the effect of camphorquinone concentration in physical-mechanical properties of experimental flowable composites in order to find the concentration that results in maximum conversion, balanced mechanical strength, and minimum shrinkage stress. Model composites based on BISGMA/TEGDMA with 70% wt filler loading were prepared containing different concentrations of camphorquinone (CQ) on resin matrix (0.25%, 0.50%, 1%, 1.50%, and 2% by weight). Degree of conversion was determined by FTIR. Surface hardness was assessed before and after 24 h ethanol storage and softening rate was determined. Depth of cure was determined by Knoop hardness evaluation at different depths. Color was assessed by reflectance spectrophotometer, employing the CIE-Lab system. Flexural strength and elastic modulus were determined by a three-point bending test. Shrinkage stress was determined in a Universal Testing Machine in a high compliance system. Data were submitted to ANOVA and Tukey’s test (α = 0.05). The increase in CQ concentration caused a significant increase on flexural strength and luminosity of composites. Surface hardness was not affected by the concentration of CQ. Composite containing 0.25% wt CQ showed lower elastic modulus and shrinkage stress when compared to others. Depth of cure was 3 mm for composite containing 1% CQ and 2 mm for the other tested composites. Degree of conversion was inversely correlated with softening rate and directly correlated with elastic modulus and shrinkage stress. In conclusion, CQ concentration affects polymerization characteristics and mechanical strength of composites. The concentration of CQ in flowable composite for optimized polymerization and properties was 1% wt of the resin matrix, which allows adequate balance among degree of conversion, depth of cure, mechanical properties, and color characteristics of these materials.


2019 ◽  
Vol 45 (4) ◽  
pp. 387-395
Author(s):  
AA Abdulmajeed ◽  
TE Donovan ◽  
R Cook ◽  
TA Sulaiman

Clinical Relevance Bulk-fill composite resins may have comparable mechanical properties to conventional composite resin. Preheating does not reduce the mechanical properties of composite resins. SUMMARY Statement of Problem: Bulk-fill composite resins are increasingly used for direct restorations. Preheating high-viscosity versions of these composites has been advocated to increase flowability and adaptability. It is not known what changes preheating may cause on the mechanical properties of these composite resins. Moreover, the mechanical properties of these composites after mastication simulation is lacking. Purpose: The purpose of this study was to evaluate the effect of fatiguing and preheating on the mechanical properties of bulk-fill composite resin in comparison to its conventional counterpart. Methods and Materials: One hundred eighty specimens of Filtek One Bulk Fill Restorative (FOBR; Bulk-Fill, 3M ESPE) and Filtek Supreme Ultra (FSU; Conventional, 3M ESPE) were prepared for each of the following tests: fracture toughness (International Organization for Standardization, ISO 6872), diametral tensile strength (No. 27 of ANSI/ADA), flexural strength, and elastic modulus (ISO Standard 4049). Specimens in the preheated group were heated to 68°C for 10 minutes and in the fatiguing group were cyclically loaded and thermocycled for 600,000 cycles and then tested. Two-/one-way analysis of variance followed by Tukey Honest Significant Difference (HSD) post hoc test was used to analyze data for statistical significance (α=0.05). Results: Preheating and fatiguing had a significant effect on the properties of both FSU and FOBR. Fracture toughness increased for FOBR specimens when preheated and decreased when fatigued (p=0.016). FOBR had higher fracture toughness value than FSU. Diametral tensile strength decreased significantly after fatiguing for FSU (p=0.0001). FOBR had a lower diametral tensile strength baseline value compared with FSU (p=0.004). Fatiguing significantly reduced the flexural strength of both FSU and FOBR (p=0.011). Preheating had no effect on the flexural strength of either FSU or FOBR. Preheating and fatiguing significantly decreased the elastic modulus of both composite resins equally (p>0.05). Conclusions: Preheating and fatiguing influenced the mechanical properties of composite resins. Both composites displayed similar mechanical properties. Preheating did not yield a major negative effect on their mechanical properties; the clinical implications are yet to be determined.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Renata A. Esteves ◽  
Letícia C. C. Boaro ◽  
Flávia Gonçalves ◽  
Luiza M. P. Campos ◽  
Cecy M. Silva ◽  
...  

This study evaluated the influence of formulation and thermal treatment on the degree of conversion, fracture toughness, flexural strength, and elastic modulus of experimental composites. Six composites were analyzed at BisGMA : TEGDMA molar ratios of 1 : 1 and 7 : 3 with filler at 30, 50, and 70 wt%. The degree of conversion was analyzed by Fourier transform infrared spectroscopy, fracture toughness was measured using the single-edge notched beam, and flexural strength and elastic modulus were measured with the 3-point bend test. For all tests, one-half of the specimens received thermal treatment at 170°C for 10 min. Data were analyzed by the Kruskal-Wallis or ANOVA/Tukey’s test (α = 5%). The 1 : 1 BisGMA : TEGDMA ratio showed higher properties than the 7 : 3 ratio. Although the material with 70% filler had a conversion lower than the one with 50%, it showed higher mechanical properties. The thermal treatment improved all properties in all materials. Therefore, the use of an equimolar ratio of BisGMA : TEGDMA can be paired with 70 wt% filler to design dental composites that possess increased advantageous physical and chemical properties. Furthermore, the simple and low-cost method of thermal treatment proposed for use in clinical dentistry has been shown to effectively improve the properties of all evaluated materials.


2018 ◽  
Vol 53 (23) ◽  
pp. 3217-3228 ◽  
Author(s):  
Abolfazl Mirjalili ◽  
Ali Zamanian ◽  
Seyed Mohammad Mahdi Hadavi

One of the most important aspects of dental resin composites is the ability to improve mechanical properties by adding reinforcing filler particles. TiO2 nanotubes are expected to improve the physical and mechanical properties of silica micro-filled dental composite. Therefore, TiO2 nanotubes were synthesized using an alkaline hydrothermal process and then functionalized with 3-methacryloxypropyl-trimethoxysilane. TiO2 nanotubes were characterized by scanning and transmission electron microscopies, X-ray diffraction and Fourier transform infrared spectroscopy. Different quantities of TiO2 nanotubes and silica microparticles were reinforced in bisphenol A-glycidyl methacrylate (Bis-GMA) and tri-ethylene glycol dimethacrylate to prepare dental composite samples. Thereafter, the flexural strength and modulus, compressive strength, degree of conversion of monomers, wear resistance and water sorption were utlized to examine the prepared composites. The flexural strength and wear resistance of composites with 3 wt% TiO2 nanotubes significantly increased in comparison with other composites. On the other hand, due to the stability of composite, the water sorption was decreased. Therefore, TiO2 nanotubes reinforcement could be a promising solution for the improvement of mechanical properties in dental composites.


2017 ◽  
Vol 16 ◽  
pp. 1-8 ◽  
Author(s):  
Leonardo Fernandes da Cunha ◽  
Ana Beatriz Franco Fernandes ◽  
Amanda Mahammad Mushashe ◽  
Gisele Maria Correr ◽  
Carla Castiglia Gonzaga

The objective of this study was to evaluate the mechanical properties of two bis-acryl interim resin materials, such as color stability, flexural strength and shear bond strength to flowable composite resin, simulating clinical situations when this material has to be used for repair as add-on. Two shades of two bis-acryl interim resin materials [Structur 2 SC (shades Bleach and A2); Protemp 4 (shades A1 and A2)] were evaluated. Discs (5 x 1 mm) were fabricated and baseline color was determined after 1 h. Ten specimens were immersed at 37oC in solutions of distilled water (control) and cola-based soft drink (Coca-Cola). Color measurements were performed with a spectrophotometer using CIELab parameters. Color readings were again measured after 2 hours, 4 hours, 24 hours and 7 days. Flexural strength was determined using the three-point bending test (10 x 1 x 2 mm) on a universal testing machine (0.5 mm/min) (n = 10). Discs of bis-acryl resin were embedded in acrylic resin, planned and distributed in 2 groups: G1 - Filtek Z350 Flow/Protemp4 and G2 - Grandio SO Flow/Structure 3 (n = 15). Cylinders (3.5 x 2 mm) were made with the flowable composite resins and polymerized for 20 s. The specimens were stored in distilled water at 37oC for 24 h and subjected to shear bond strength test. Data were analyzed using one-way ANOVA and Tukey’s test ( = 0.05). ΔE values were higher for Structur Bleach (3.08)a compared with Protemp 4 (shade A1, 2.22)b (shade A2, 2.25)b. There were no significant differences between Structur Bleach and Structur A2 (2.62)ab. Coca-Cola presented higher ΔE values (3.08)a than (2.00)b. Regarding time, ΔE values increased from 1.84a after 2 h to 2.31b after 4 h. The higher values were observed after 24 h and 7 days (2.93c and 3.09d, respectively). No significant differences were observed for the flexural strength of Structur (22.05 MPa)a and Protemp 4 (19.01 MPa)a. The repairs executed with Structur/Grandio flow (9.21 MPa)a were similar to those performed with Protemp 4/Z350XT flow (10.71 MPa)a. It can be concluded that the two bis-acyl resins evaluated showed similar physical and mechanical properties.


2016 ◽  
Vol 51 (7) ◽  
pp. 927-937 ◽  
Author(s):  
Luiza MP Campos ◽  
Letícia C Boaro ◽  
Tamiris MR Santos ◽  
Pamela A Marques ◽  
Sonia RY Almeida ◽  
...  

This study had as its main objective to evaluate the flexural properties (strength and modulus) and degree of conversion of a dimethacrylate resin containing different amounts of nanoparticulated clay Montomorillonite (MMT) as filler. A series of composites containing similar amounts (in volume) of barium glass particles was also tested as control data. Eight formulations with polymeric matrix-based BisGMA/TEGDMA (Bisphenol A Bis(2-hydroxy-3 methacryloxypropyl)Ether/Triethyleneglycol Dimethacrylate), four added with MMT and four added with barium glass in the volume concentration of 20, 30, 40 and 50 vol% were studied. The degree of conversion was determined using near-IR spectroscopy. Elastic modulus and flexural strength were determined by the three-point bending test. The dispersion of MMT nanoparticles was determined by means of X-ray diffraction and transmission electron microscopy analysis. The fillers montomorillonite and barium glass interacted with polymer matrix-based BisGMA/TEGDMA in a distinct manner. Although the addition of montomorillonite nanoparticles resulted in similar degree of conversion and higher elastic modulus values at all concentrations tested, only at the 20 vol% the flexural strength was statistically higher, compared to the control groups filled with barium glass. This could be related to the need of concentration optimization of montomorillonite for each type of polymer matrix in order to adjust or improve mechanical properties. The addition of low concentrations (<l 20% vol) of montomorillonite nanoparticles in dental composites resins – such as additive or hybrid filler – should be studied, aiming to the reduction of polymerization shrinkage, better mechanical properties and improvement of a new technology for future applications.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3097
Author(s):  
Leszek Szalewski ◽  
Dorota Wójcik ◽  
Marcin Bogucki ◽  
Jacek Szkutnik ◽  
Ingrid Różyło-Kalinowska

Currently, composite resins are used in many restorative procedures. Previous studies showed that drinking beverages may affect the mechanical properties such as microhardness or flexural strength of dental composite resins. The aim of the present study was to investigate the influence of common beverages on the mechanical properties of composite resins. Samples of the materials were prepared according to the ISO 4049:2010 standard and producer’s recommendations. The samples were next conditioned in tested fluids: distilled water, sparkling water, Coca-Cola, Red Bull and orange juice for 7 days. Vickers microhardness and flexural strength testing was performed after 7 days. Performed statistic tests confirmed the significance of microhardness changes of the tested materials in terms of both different conditioning of the samples and different composite materials. The mean flexural strength of composites was highest in distilled water and it was reduced after one week in different beverages. We conclude that all tested beverages influenced on Vickers microhardness of tested composite resins. Flexural strength only in one material was statistically significantly influenced by tested beverages. The results of this study should be taken into consideration by a dentist preparing recommendations for the patients after dental treatment with usage of composite material or after cementing composite based fixed dentures.


2021 ◽  
Vol 11 (7) ◽  
pp. 3032
Author(s):  
Tuan Anh Le ◽  
Sinh Hoang Le ◽  
Thuy Ninh Nguyen ◽  
Khoa Tan Nguyen

The use of fluid catalytic cracking (FCC) by-products as aluminosilicate precursors in geopolymer binders has attracted significant interest from researchers in recent years owing to their high alumina and silica contents. Introduced in this study is the use of geopolymer concrete comprising FCC residue combined with fly ash as the requisite source of aluminosilicate. Fly ash was replaced with various FCC residue contents ranging from 0–100% by mass of binder. Results from standard testing methods showed that geopolymer concrete rheological properties such as yield stress and plastic viscosity as well as mechanical properties including compressive strength, flexural strength, and elastic modulus were affected significantly by the FCC residue content. With alkali liquid to geopolymer solid ratios (AL:GS) of 0.4 and 0.5, a reduction in compressive and flexural strength was observed in the case of geopolymer concrete with increasing FCC residue content. On the contrary, geopolymer concrete with increasing FCC residue content exhibited improved strength with an AL:GS ratio of 0.65. Relationships enabling estimation of geopolymer elastic modulus based on compressive strength were investigated. Scanning electron microscope (SEM) images and X-ray diffraction (XRD) patterns revealed that the final product from the geopolymerization process consisting of FCC residue was similar to fly ash-based geopolymer concrete. These observations highlight the potential of FCC residue as an aluminosilicate source for geopolymer products.


Sign in / Sign up

Export Citation Format

Share Document