scholarly journals Multi-Objective Parametric Optimization of Weld Strength of Metal Inert Gas (MIG) Welding by using Analysis of Variance, Taguchi, and VIKOR Techniques

Author(s):  
Shivani Parmar

Abstract: Welding is an enormously essential manufacturing technique which allows the users to create permanent joints efficiently, due to its durability this process is extensively used in various industries like automotive, construction as well as in the aviation industry. The present study focuses on the optimization of the Metal Arc Welding using VIKOR method. Four input variables Current, Voltage, Wire Feed Rate and Gas Flow Rate are considered to study their effect on three responses tensile, bending and hardness on the weldments of AISI 1008 low carbon steel material. Experiments were planned as per Taguchi‘s L9 OA. As traditional Taguchi method is not adequate to solve multi responses problem, to overcome this limitation MCDM approach VIKOR analysis has been carried out for obtaining optimal parameters setting for multi-response optimization. Three specimens (for tensile, bending, and hardness) for each experimental run are fabricated for the measurement of respective strength and hardness. Investigation is done by following the steps of VIKOR method, and optimal parameter setting for multi quality response is obtained corresponding to the lower VIKOR index value. Keywords: Metal Inert Gas (MIG) Welding, VIKOR, S/N ratio, ANOVA

Author(s):  
G.T. Gopalakrishna ◽  
B.S. Ajay Kumar ◽  
K.R. Vishnu ◽  
S.D. Sundareshan

Dissimilar welding between low carbon steel and austenitic stainless steel using both Tungsten inert gas and metal inert gas welding has been reported. However, the combination of SS304 and mild steel has less tensile strength in both TIG and MIG welding. Therefore, this study is undertaken with the objective of finding the weld strength of EN19 and SS304L using TIG and MIG welding with different parameters. Tensile strength and hardness of the welded region is found to be higher than that of the base material. The comparison of microstructure near the weld pool and the base material revealed the changes in composition of materials besides the formation of marten site in the welded region. The main application of this material thus prepared by welding processes could be in automobile industries, food industries and nuclear pressure vessels.


Author(s):  
Manas Kumar Mondal ◽  
Govind Sharan Gupta ◽  
Shin-ya Kitamura ◽  
Nobuhiro Maruoka

Recently, the demand of the steel having superior chemical and physical properties has increased for which the content of carbon must be in ultra low range. There are many processes which can produce low carbon steel such as tank degasser and RH (Rheinstahl-Heraeus) processes. It has been claimed that using a new process, called REDA (Revolutionary Degassing Activator), one can achieve the carbon content below 10ppm in less time. REDA process, in terms of installment cost, is in between the tank degasser and RH processes. As such, REDA process has not been studied thoroughly. Fluid flow phenomena affect the decarburization rate the most besides the chemical reaction rate. Therefore, momentum balance equations along with k-? turbulent model have been solved for gas and liquid phases in two-dimension (2D) for REDA process. The fluid flow phenomena have been studied in details for this process by varying gas flow rate, depth of immersed snorkel in the steel, diameter of the snorkel and change in vacuum pressure. It is found that the design of the snorkel affects the melt circulation of the bath significantly.


POROS ◽  
2018 ◽  
Vol 15 (1) ◽  
pp. 44
Author(s):  
Yusril Irwan ◽  
Gatot Pamungkas

Abstract: Main frame welding at the front automatic motorcycle of PT. XXX is the stage of (trial production). The welding machine is Panasonic TM-1400G3 MIG automatic welding machine with 75% Argon and 25% Ar-CO2. Main frame material low carbon steel STAM 390G. To obtain the welding results in accordance with the standards specified by the client, weld testing parameters are varied for each test, which are ampere and voltage. The constant welding parameters in this research are travel speed, gas flow, welding direction, tip distance to workpiece, torch angle and welding angle. All test results are inspected visually and dimensionally, if passed, it will be followed by inspection of macro structure analysis. The results measured on the macro structure analysis ar : penetration (a1), penetration (a2), bead welding, throuth, leg length and crown with standard measurement values determined by the client PT.XXX. The welding results (OK) in the macro structure analysis measurement are defined as reference parameters for mass production. The best parameters for main frame welding are vertical position down (3G) with 170 Ampere current and 20 Volt voltages, and for horizontal position (2G) with 180 ampere current parameters and 17 Volt voltages. 


2020 ◽  
Vol 15 (2) ◽  
pp. 89-99
Author(s):  
Yakup Kaya ◽  
Gökhan Çayırhan ◽  
Mehmet Bökü ◽  
Nizamettin Kahraman

Author(s):  
R. Koganti ◽  
C. Karas ◽  
A. Joaquin ◽  
D. Henderson ◽  
M. Zaluzec ◽  
...  

The development of lightweight vehicles, in particular aluminum intensive vehicles, require significant manufacturing process development for joining and assembling aluminum structures. Currently, 5xxx and 6xxx aluminum alloys are being used in various structural applications in a number of lightweight vehicles worldwide. Various joining methods, such as MIG, Laser and adhesive bonding have been investigated as technology enables for high volume joining of 5xxx, and 6xxx series alloys. In this study, metal inert gas (MIG) welding is used to join 5754 non-heat-treatable alloy sheet products. The objective of this study is to develop optimum weld process parameters for non-heat-treatable 5754 aluminum alloys. The MIG welding equipment used in this study is an OTC/Daihen CPD-350 welding systems and DR-4000 pulse power supply. The factors selected to understand the influence of weld process parameters on the mechanical properties and metallurgy (weld penetration) include power input (torch speed, voltage, current, wire feed), pulse frequency, and gas flow rate. Test coupons used in this study were based on a single lap configuration. A full factorial design of experiment (DOE) was conducted to understand the main and interaction effects on joint failure and weld penetration. The joint strengths and weld penetrations are measured for various operating ranges of weld factors. Post weld analysis indicates, power input and gas flow rate are the two signficant factors (statistically) based on lap shear load to failure and weld penentration data. There were no 2-way or 3-way interaction effects observed in ths weld study. Based on the joint strength and weld penetration, optimum weld process factors were determined.


2012 ◽  
Vol 445 ◽  
pp. 697-701
Author(s):  
M. Heydarzadeh Sohi ◽  
S. Shahbazi ◽  
A. Halvaee

In this study tungsten inert gas (TIG) surface melting of pre- plasma sprayed WC-14%Co low carbon steel has been studied. Surface melting was performed under different heat inputs by using various TIG parameters including intensity and kind of current. Microstructure and microhardness of surface alloyed specimens were then studied. Eutectic structures containing tungsten-rich carbides were shaped in a matrix including martensite lath, when high heat input was used. Decreasing at heat input affected the microstructure of the alloyed layers, and high amount of faceted tungsten-rich carbides (Fe3W3C) were formed in fairly low heat input. Microhardness of melted layers highly improved in comparison with that of the substrate.


Sign in / Sign up

Export Citation Format

Share Document