scholarly journals The orientation of residential development in Mashhadthat takes account of daylight

Vestnik MGSU ◽  
2021 ◽  
pp. 1419-1429
Author(s):  
Paria Ildarabadi ◽  
Samaneh Asadi ◽  
Ilkhomzhon S. Shukurov

Introduction. Due to population growth and urbanisation, energy consumption by urban buildings, especially in developing countries, is increasing dramatically. Limited energy resources and the need to save on consumption necessitate the optimal design in the field of residential development. Building walls are an important boundary between indoor and outdoor spaces, since daylight has a direct impact on energy consumption in buildings. The optimal use of daylight in living spaces reduces energy consumption dramatically. In this regard, the proper orientation of residential buildings is an effective method of energy consumption optimisation. If the layout of an urban development fits the climate of a region, residential buildings are constructed with account taken of the optimal orientation to daylighting. Materials and methods. The aim of this study is the optimal orientation of a part of residential development in Mashhad. To achieve the goal of the study, comprehensive studies of the city of Mashhad and its environs were conducted and Mashhad climate data were collected. Hence, daylight scattering was analysed for a given area with regard to the optimal angle of orientation to daylighting. Daylight was analysed in the two modes, including the present-day layout and the angular position (the north side), that were compared later. The study area has the angle of 20 degrees from the north to the west. All analyses and simulations were performed on the longest (June 22) and shortest (December 22) days of the year using parametric software programmes Grasshopper and Ladybug. Results. A comparative analysis of the two modes shows that the study area, located in the north, receives more daylight, regardless of the angle of rotation. Mashhad summers are hot and dry, and winters are cold and humid; a lot of light can penetrate into buildings during the hot season. In winter, overshadowing by buildings does not allow enough daylight due to the unfavourable location of the residential development. According to the standard, the optimal rotation angle of buildings in Mashhad varies from 5 degrees northeast to 20 degrees northwest. Conclusions. The results show that the optimal daylight orientation in Mashhad is 20 degrees southeast. This value is in the standard range for the residential orientation, and the amount of light, received in summer and winter seasons, is proportional to the needs of indoor space users; natural lighting makes residential spaces more comfortable and reduces energy consumption.

2021 ◽  
Vol 293 ◽  
pp. 02044
Author(s):  
Zong Junlin ◽  
Zhang Longwei

Objective To explore the relationship between window opening ratio and natural lighting and energy consumption of University Gymnasiums in severe cold area, and put forward optimization strategies. Methods Digital simulation technology was used to simulate the energy consumption and natural lighting of University Gymnasium window opening ratio, and the window opening scheme with natural lighting and low energy consumption was obtained. Conclusion The side window lighting should be used in the window opening scheme of small and medium-sized university gymnasiums. Within the range of experimental data, the North-South lighting is the main lighting mode, and the East-West lighting is the auxiliary.


2021 ◽  
Vol 1 (1) ◽  
pp. 129-137
Author(s):  
Sanjaya Uprety ◽  
Shiva Kafley ◽  
Barsha Shrestha

The orientation and glazed surface area used for windows in a building have significant effects on its indoor thermal comfort and overall energy consumption. The increasing use of glazed windows and lack of consideration of orientation in building design have become a major problem in warm and humid regions as windows cover sensitive skin areas for the exchange of energy leading to increased solar gain inside the building. This paper describes the effect of the varied ‘area ratio of glazed window to the wall for different building orientations’ on the thermal performance of the residential building in a warm humid climatic region of Nepal. A typical residential building located in Kalikanagr of Butwal, the fast-urbanizing sub-metropolis of Western Nepal, was selected for the study from 18 houses surveyed using the purposive sampling method. Nine varying values of Window to Wall Ratio (WWR) of glazed façade ranging from 0.1 to 0.9 with a constant increment of 0.1 in north and south façades, and the change in the building orientations were considered for the detailed study. Altogether eighty different test scenarios including base case scenarios were created and annual thermal energy consumption was computed for each test scenario using the Autodesk Ecotect Analysis, 2011. Findings from the study showed that the south orientation is the most appropriate compared to the north-east for all WWR to reduce the building energy consumption and an increase in WWR also results in increased energy consumption. The study concludes the careful considerations of WWR and the south orientation during the designing of building will contribute to efficient energy consumption in residential buildings.


2019 ◽  
Vol 136 ◽  
pp. 02036
Author(s):  
Yueheng Tong ◽  
Yang Chen ◽  
Wubing Shao

With the rapid development of social economy, the problem of energy is becoming more and more serious, building energy conservation has become the top priority. Considering the abundant solar energy resources in the Sanjiangyuan area, this paper takes reduce the energy consumption of local residential noumena as the objective, and takes energy consumption of residential system as research target. Taking the modern dwellings in the Sanjiangyuan area as an example, to build a typical model, using the Dest software developed by Tsinghua University to dynamically simulate the load variation of building envelope caused by windows, exterior walls, window wall ratio and roof, and 16 orthogonal test results are simulated. Through the simulation analysis of the upper floors of the building, this study explores the changes in the influence of the form of the envelope structure on the building, then analyse the sensitivity of each factor affecting building energy consumption, and find out the optimal scheme of the envelope in the locality. Finally, this paper suggests that the energy conservation of new residential buildings in Sanjiangyuan area should strengthen the thickness of thermal insulation layer of envelop, open large windows in the south, open small windows in the north, and choose energy saving windows with low heat transfer coefficient to reduce energy consumption and save energy.


Buildings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 59
Author(s):  
Zhixing Li ◽  
Yukai Zou ◽  
Mimi Tian ◽  
Yuxi Ying

This paper first analyzes the climate characteristics of five typical cities in China, including Harbin, Beijing, Shanghai, Shenzhen and Kunming. Then, based on Grasshopper, Ladybug and Honeybee analysis software, according to the indoor layout of typical residential buildings, this research extracts design parameters such as the depth and width of different rooms and their window-to-wall ratios etc., to establish a climate responsive optimization design process with indoor lighting environment comfort, with heating and cooling demand as the objective functions. Meanwhile, based on Monte Carlo simulation data, ANN (Artificial Neural Network) is used to establish a prediction model to analyze the sensitivity of interior design parameters under different typical cities’ climatic conditions. The study results show that the recommended values for the total width and total depth of indoor units under the climatic conditions of each city are both approximately 14.97 m and 7.88 m. Among them, under the climatic conditions of Harbin and Shenzhen, the design parameters of residential interiors can take the recommended value of UDI optimal or nZEB optimal. While the recommended values of window-to-wall ratios for the north bedroom, master bedroom and living room in Shanghai residential interiors are 0.26, 0.32 and 0.33, respectively. The recommended value of the window-to-wall ratio of the master bedroom in Kunming residences is 0.36, and that of the remaining rooms is between 0.15 and 0.18. The recommended values of window-to-wall ratios for the master bedroom and living room in Beijing residences are 0.41 and 0.59, respectively, and that for the remaining rooms are 0.15. The multi-objective optimization process based on parametric performance simulation used in the study can effectively assist architects in making energy-saving design decisions in the preliminary stage, allowing architects to have a case to follow in the actual design operation process.


2020 ◽  
Vol 2020 (2) ◽  
pp. 113-118
Author(s):  
Volodymyr Yehorchenkov ◽  
◽  
Oleh Sergeychuk ◽  
Lidiia Koval ◽  
◽  
...  

It’s well known that a criterion of estimating the varying natural lighting is exposure equal to the product of light intensity by its duration. Here we have made studies into the exposure in the room depending on the orientation of a light aperture and its location in space. The exposure has been considered by the example of three identical office rooms with the same light apertures oriented north, west and south and having three positions – vertical, inclined and horizontal. To calculate the annual exposure we made use of the well-known software package VELUX Daylight Visualizer 2. For convenience of analyzing the exposure there was introduced the concept of the natural exposure coefficient (NEC) which is a ratio between the exposure in the room and a simultaneous value of the outer exposure. Our studies have shown that exposure is an effective criterion to assess the indoor natural lighting in time. The existing system of estimating energy consumption in lighting buildings with the help of a simultaneous lighting is rough and does not take into account such factors as orientation of light apertures by the sides of the horizon and their location in space. The use of exposure let us improve the method of calculating energy consumption in lighting premises taking into account the light aperture location in space and their as orientation by the sides of the horizon. The numerical experiment performed has given a predicted result, namely, the most power-consuming room is the north-oriented one with the vertical light aperture and the least power-consuming room is the one with the horizontal light aperture. The room with the inclined light aperture has average energy consumption.


Author(s):  
Junaidah Jailani ◽  
◽  
Norsyalifa Mohamad ◽  
Muhammad Amirul Omar ◽  
Hauashdh Ali ◽  
...  

According to the National Energy Balance report released by the Energy Commission of Malaysia in 2016, the residential sector uses 21.6% of the total energy in Malaysia. Residents waste energy through inefficient energy consumption and a lack of awareness. Building occupants are considered the main factor that influences energy consumption in buildings, and to change energy consumption on an overall scale, it is crucial to change individual behaviour. Therefore, this study focused on analysing the energy consumption pattern and the behaviour of consumers towards energy consumption in their homes in the residential area of Batu Pahat, Johor. A self-administrated questionnaire approach was employed in this study. The findings of this study showed that the excessive use of air conditioners was a significant factor in the increasing electricity bills of homeowners as well as the inefficient use of electrical appliances. Also, this study determined the effect of awareness on consumer behaviour. This study recommends ways to help minimise energy consumption in the residential area.


2020 ◽  
Vol 13 (1) ◽  
pp. 201
Author(s):  
Pau Chung Leng ◽  
Gabriel Hoh Teck Ling ◽  
Mohd Hamdan Ahmad ◽  
Dilshan Remaz Ossen ◽  
Eeydzah Aminudin ◽  
...  

The provision requirement of 10% openings of the total floor area stated in the Uniform Building By-Law 1984 Malaysia is essential for natural lighting and ventilation purposes. However, focusing on natural ventilation, the effectiveness of thermal performance in landed residential buildings has never been empirically measured and proven, as most of the research emphasized simulation modeling lacking sufficient empirical validation. Therefore, this paper drawing on field measurement investigates natural ventilation performance in terraced housing with an air-well system. The key concern as to what extent the current air-well system serving as a ventilator is effective to provide better thermal performance is to be addressed. By adopting an existing single-story air-welled terrace house, indoor environmental conditions and thermal performance were monitored and measured using HOBO U12 air temperature and humidity, the HOBO U12 anemometer, and the Delta Ohm HD32.3 Wet Bulb Globe Temperature meter for a six-month duration. The results show that the air temperature of the air well ranged from 27.48 °C to 30.92 °C, with a mean relative humidity of 72.67% to 79.25%. The mean air temperature for a test room (single-sided ventilation room) ranged from 28.04 °C to 30.92 °C, with a relative humidity of 70.16% to 76.00%. These empirical findings are of importance, offering novel policy insights and suggestions. Since the minimum provision of 10% openings has been revealed to be less effective to provide desirable thermal performance and comfort, mandatory compliance with and the necessity of the bylaw requirement should be revisited.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 405
Author(s):  
Anam Nawaz Khan ◽  
Naeem Iqbal ◽  
Rashid Ahmad ◽  
Do-Hyeun Kim

With the development of modern power systems (smart grid), energy consumption prediction becomes an essential aspect of resource planning and operations. In the last few decades, industrial and commercial buildings have thoroughly been investigated for consumption patterns. However, due to the unavailability of data, the residential buildings could not get much attention. During the last few years, many solutions have been devised for predicting electric consumption; however, it remains a challenging task due to the dynamic nature of residential consumption patterns. Therefore, a more robust solution is required to improve the model performance and achieve a better prediction accuracy. This paper presents an ensemble approach based on learning to a statistical model to predict the short-term energy consumption of a multifamily residential building. Our proposed approach utilizes Long Short-Term Memory (LSTM) and Kalman Filter (KF) to build an ensemble prediction model to predict short term energy demands of multifamily residential buildings. The proposed approach uses real energy data acquired from the multifamily residential building, South Korea. Different statistical measures are used, such as mean absolute error (MAE), root mean square error (RMSE), mean absolute percentage error (MAPE), and R2 score, to evaluate the performance of the proposed approach and compare it with existing models. The experimental results reveal that the proposed approach predicts accurately and outperforms the existing models. Furthermore, a comparative analysis is performed to evaluate and compare the proposed model with conventional machine learning models. The experimental results show the effectiveness and significance of the proposed approach compared to existing energy prediction models. The proposed approach will support energy management to effectively plan and manage the energy supply and demands of multifamily residential buildings.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3876
Author(s):  
Sameh Monna ◽  
Adel Juaidi ◽  
Ramez Abdallah ◽  
Aiman Albatayneh ◽  
Patrick Dutournie ◽  
...  

Since buildings are one of the major contributors to global warming, efforts should be intensified to make them more energy-efficient, particularly existing buildings. This research intends to analyze the energy savings from a suggested retrofitting program using energy simulation for typical existing residential buildings. For the assessment of the energy retrofitting program using computer simulation, the most commonly utilized residential building types were selected. The energy consumption of those selected residential buildings was assessed, and a baseline for evaluating energy retrofitting was established. Three levels of retrofitting programs were implemented. These levels were ordered by cost, with the first level being the least costly and the third level is the most expensive. The simulation models were created for two different types of buildings in three different climatic zones in Palestine. The findings suggest that water heating, space heating, space cooling, and electric lighting are the highest energy consumers in ordinary houses. Level one measures resulted in a 19–24 percent decrease in energy consumption due to reduced heating and cooling loads. The use of a combination of levels one and two resulted in a decrease of energy consumption for heating, cooling, and lighting by 50–57%. The use of the three levels resulted in a decrease of 71–80% in total energy usage for heating, cooling, lighting, water heating, and air conditioning.


Sign in / Sign up

Export Citation Format

Share Document