scholarly journals An Overview on Biomaterials: Pharmaceutical and Biomedical Applications

2021 ◽  
Vol 11 (1-s) ◽  
pp. 154-161
Author(s):  
Nikita A Naidu ◽  
Kamlesh Wadher ◽  
Milind Umekar

The development of biomaterials have existed from around half a century and manifest its use in different fields. Biomaterials are used in living creature body, looking on its biocompatibility nature. In recent years, advances of biomaterials are showing a marked presence in the fast growing fields of pharmaceuticals and medicines. According to their availability, different types of biomaterials like metal, ceramic, polymer and their composites are used for several purpose in the body. In this review article, types of biomaterials have been discussed with their advantages, disadvantages and recent applications in the pharmaceutical field such as implants used to mimic the structure and function of tissues, dental implants, wound healing, cell regeneration, regenerative medicines, delivery of drugs and different organ regeneration. Organ regeneration leading to replacement of organs such as heart, trachea and lungs etc. by use of specific biomaterials have been reported with the diagnosis of diseases and its treatment.

2017 ◽  
Vol 2 (1) ◽  
pp. 135
Author(s):  
Fasiha F. Khan ◽  
Abid Saeed ◽  
Shujjah Haider ◽  
Kaleem Ahmed ◽  
Aleem Ahmed

Medical imaging provides information regarding the body part, and their tissues. Any disorder in their structure and function is detected easily and then correlates with clinical findings. This all provide the suitable treatment guidelines with less pain and convenient ways. With the passage of time as technology advances, the accuracy and efficiency in medical imaging get also advanced. Different kinds of algorithms are developed to enhance the sensitivity of medical imaging process lines.


The review article discusses the possibilities of using fractal mathematical analysis to solve scientific and applied problems of modern biology and medicine. The authors show that only such an approach, related to the section of nonlinear mechanics, allows quantifying the chaotic component of the structure and function of living systems, that is a priori important additional information and expands, in particular, the possibilities of diagnostics, differential diagnosis and prediction of the course of physiological and pathological processes. A number of examples demonstrate the specific advantages of using fractal analysis for these purposes. The conclusion can be made that the expanded use of fractal analysis methods in the research work of medical and biological specialists is promising.


2021 ◽  
Author(s):  
Fang Zhou ◽  
Chang Su ◽  
Shuqi Xu ◽  
Linyuan Lü

Abstract In real-world networks, there usually exist a small set of nodes that play an important role in the structure and function of networks. Those vital nodes can influence most other nodes in the network via a spreading process. While most of the existing works focused on vital nodes that can maximize the spreading size in the final stage, which we call final influencers, recent work proposed the idea of fast influencers, which emphasizes nodes’ spreading capacity at the early stage. Despite the recent surge of efforts in identifying these two types of influencers in networks, there remained limited research on untangling the differences between fast influencers and final influencers. In this paper, we first distinguish the two types of influencers: fast-only influencers and final-only influencers. The former is defined as individuals who can achieve a high spreading effect at the early stage but lose their superiority in the final stage, and the latter are those individuals that fail to exhibit a prominent spreading performance at the early stage but influence a large fraction of nodes at the final stage. Further experiments based on eight empirical datasets, we reveal the key differences between the two types of influencers concerning their spreading capacity and the local structures. We also analyze how network degree assortativity influences the fraction of the proposed two types of influencers. The results demonstrate that with the increase of degree assortativity, the fraction of the fast-only influencers decreases, which indicates that more fast influencers tend to keep their superiority at the final stage. Our study provides insights into the differences and evolution of different types of influencers and has important implications for various empirical applications, such as advertisement marketing, and epidemic suppressing.


1995 ◽  
Vol 7 (4) ◽  
pp. 847 ◽  
Author(s):  
C Gagnon

With very few exceptions, the basic structure of the 9+2 axoneme has been well preserved over a very long period of evolution from protozoa to mammais. This stability indicates that the basic structural components of the axoneme visible by electron microscopy, as well as most of the other unidentified components, have withstood the passage of time. It also means that components of the 9+2 axoneme have sufficient diversity in function to accommodate the various types of motility patterns encountered in different species of flagella. Several of the 200 polypeptides that constitute the axoneme have been identified as components of the dynein arms, radial spokes etc. but many more remain to be identified and their function(s) remain to be determined. Because this review deals with the regulation of flagellar movement at the axonemal level, it does not include regulation of flagella by extracellular factors unless these factors have a direct action on axonemal components. In this context, it is very important firstly to understand the structural components of the axoneme and how they influence and regulate axonemal movement. Different primitive organisms are mentioned in this review since major breakthroughs in our understanding of how an axoneme generates different types of movement have been made through their study. Despite some variations in structure and function of axonemal components, the basic mechanisms involved in the regulation of flagella from Chlamydomonas or sea urchin spermatozoa should also apply to the more evolved mammalian species, including human spermatozoa.


Author(s):  
Albert W. Nyongesaa ◽  
Esther M. Malukib ◽  
Jemimah A. Simbaunib

Khat, Catha edulis, use is rampant in Eastern Africa and Middle East countries with associated reports of reproductive function impairment in the body of the user. Reports on recovery post long-term khat exposure are obscure. The present study investigated evidence of restoration of testicular and epididymal structure and function during withdrawal from cytotoxic damage caused by sub-chronic exposure of khat extract. Twenty-eight male rabbits were divided into 7 groups of 4 rabbits each. Group I (control) was administered normal saline while groups II, III and IV were administered 1.0 g/kg, 10 g/kg and 20 g/kg body weight of khat extract, respectively, via oral gavage on alternate days of the week for 12 weeks. Blood samples from animals were collected for hormonal assays followed by euthanasia using 26.4 mg/kg body weight of Sagatal sodium intramuscularly for testicular and epididymal histology. Group V, VI and VII were administered 1.0 g/kg, 10 g/kg and 20 g/kg body weight of khat extract, respectively, orally on alternate days of the week for 12 weeks followed by 1-month withdrawal period, blood samples collected for hormone assays and animals sacrificed for testicular and epididymal histology. High khat dose, 20 g/kg body weight, at sub-chronic exposure caused degeneration in spermatogenic cells with accompanying decrease in plasma FSH and testosterone. Histological output of Sertoli cells, Leydig cells and epididymal epithelium appeared unaffected in treatment groups. Post withdrawal data showed apparent regeneration of seminiferous epithelium and restoration of plasma FSH and testosterone comparable to control. It appears khat extract preferentially affected germ cell spermatogonia and subsequent daughter cells while stem cell spermatogonia were unaffected and contributed to regeneration of germinal epithelium and endocrine function.


Author(s):  
Madeleine Keehner ◽  
Peter Khooshabeh ◽  
Mary Hegarty

This chapter examines human factors associated with using interactive three-dimensional (3D) visualizations. Virtual representations of anatomical structure and function, often with sophisticated user control capabilities, are growing in popularity in medicine for education, training, and simulation. This chapter reviews the cognitive science literature and introduces issues such as theoretical ideas related to using interactive visualizations, different types and levels of interactivity, effects of different kinds of control interfaces, and potential cognitive benefits of these tools. The authors raise the question of whether all individuals are equally capable of using 3D visualizations effectively, focusing particularly on two variables: (1) individual differences in spatial abilities, and (2) individual differences in interactive behavior. The chapter draws together findings from the authors’ own studies and from the wider literature, exploring recent insights into how individual differences among users can impact the effectiveness of different types of external visualizations for different kinds of tasks. The chapter offers recommendations for design, such as providing transparent affordances to support users’ meta-cognitive understanding, and employing personalization to complement the capabilities of different individuals. Finally, the authors suggest future directions and approaches for research, including the use of methodology such as needs analysis and contextual enquiry to better understand the cognitive processes and capacities of different kinds of users.


‘Cellular structure and function’ covers the roles, structures, and functions of the main four types of macromolecules of the human body, namely proteins, lipids, carbohydrates, and nucleic acids. For these macromolecules, the roles and types of each class are discussed (for proteins this includes their roles as structural proteins and enzymes and their kinetics; for lipids, the roles and types of lipid found in the body are considered; for carbohydrates, their roles including structural and metabolic are discussed; and the structure of nucleic acids is described). Then follows a description of the organization of the cell, including the plasma membrane and its components, and the intracellular organelles. Cell growth, division, and apoptosis are covered, as are the formation of gametes, and finally the principles of how cellular functions can be modulated by pharmacological agents through receptors and signalling pathways are discussed.


2014 ◽  
Vol 602-605 ◽  
pp. 499-502
Author(s):  
Yan Yuan ◽  
Le Cao

A drawer-combined condiment container was designed, and the design methods and steps were illustrated from four aspects, including the structure and function, material selection, dimensioning, modeling and decoration. With the integrated storage and independent sealing of different types of condiment, as well as the pickup of improved fluid condiment, it is characterized by cleanliness, convenience in application, space-saving and reusable features when compared to the like product. Therefore, it is of application and promotion value in the packing container design and related industries.


Sign in / Sign up

Export Citation Format

Share Document