Fractal analysis in biology and medicine

The review article discusses the possibilities of using fractal mathematical analysis to solve scientific and applied problems of modern biology and medicine. The authors show that only such an approach, related to the section of nonlinear mechanics, allows quantifying the chaotic component of the structure and function of living systems, that is a priori important additional information and expands, in particular, the possibilities of diagnostics, differential diagnosis and prediction of the course of physiological and pathological processes. A number of examples demonstrate the specific advantages of using fractal analysis for these purposes. The conclusion can be made that the expanded use of fractal analysis methods in the research work of medical and biological specialists is promising.

1849 ◽  
Vol 139 ◽  
pp. 109-137 ◽  

In venturing to offer a second communication to the Royal Society respecting the structure of the liver, I feel the rather anxious to do so, that I may have an opportunity of correcting an error and supplying a deficiency which existed in my previous paper. In the following observations I purpose to present some account of the structure of the liver examined in the ascending series of animals, and also to describe the several stages of its evolution in the embryo; in this way I trust I may be able to exhibit the characteristic structural features of the organ as it exists in Man and the higher animals, and also to determine the true place which ought to be assigned to it in a classification of the various glandular organs occurring in the same. I am not aware that any detailed account of the structure of the liver has been recently published, except that by M. Natalis Guillot, which however, so far as I comprehend it, does not seem to be one that can be readily accepted; the idea that the minute biliary ducts and lymphatics originate together in a common net-work, is à priori improbable, and entirely opposed to conclusive evidence (as I think), which will be subsequently adduced. A very interesting paper on the structure and function of the liver has also appeared in the 4th volume of the Guy’s Hospital Reports, from the pen of Dr. Williams; to his labours I shall several times have occasion to refer, but it will be seen that I differ from him in several particulars, especially respecting the importance of the basement or limitary membrane.


2019 ◽  
Vol 151 (10) ◽  
pp. 1163-1172 ◽  
Author(s):  
John Cowgill ◽  
Baron Chanda

Key advances in single particle cryo-EM methods in the past decade have ushered in a resolution revolution in modern biology. The structures of many ion channels and transporters that were previously recalcitrant to crystallography have now been solved. Yet, despite having atomistic models of many complexes, some in multiple conformations, it has been challenging to glean mechanistic insight from these structures. To some extent this reflects our inability to unambiguously assign a given structure to a particular physiological state. One approach that may allow us to bridge this gap between structure and function is voltage clamp fluorometry (VCF). Using this technique, dynamic conformational changes can be measured while simultaneously monitoring the functional state of the channel or transporter. Many of the important papers that have used VCF to probe the gating mechanisms of channels and transporters have been published in the Journal of General Physiology. In this review, we provide an overview of the development of VCF and discuss some of the key problems that have been addressed using this approach. We end with a brief discussion of the outlook for this technique in the era of high-resolution structures.


1987 ◽  
Vol 137 (6) ◽  
pp. 1324-1324
Author(s):  
M.J. Cosentino ◽  
A.T.K. Cockett

Genetika ◽  
2002 ◽  
Vol 34 (2-3) ◽  
pp. 53-58 ◽  
Author(s):  
Dragoslav Marinkovic

Biological progress consists of the continuous increase of divergence with simultaneous maintenance and the increase of conformance (harmoniousness) of living systems. A mutual balance between divergence of forms and the degree of perfection of their structure and function indicates a level of the evolutionary development of a particular group of organisms, i.e. a level and prospects of their evolutionary progress. An enormous potential of combined genetic polymorphousness is reduced to adaptive landscapes of a limited number of developmental programmes that make actual units of inheritance and variability within each species.


2021 ◽  
Vol 11 (1-s) ◽  
pp. 154-161
Author(s):  
Nikita A Naidu ◽  
Kamlesh Wadher ◽  
Milind Umekar

The development of biomaterials have existed from around half a century and manifest its use in different fields. Biomaterials are used in living creature body, looking on its biocompatibility nature. In recent years, advances of biomaterials are showing a marked presence in the fast growing fields of pharmaceuticals and medicines. According to their availability, different types of biomaterials like metal, ceramic, polymer and their composites are used for several purpose in the body. In this review article, types of biomaterials have been discussed with their advantages, disadvantages and recent applications in the pharmaceutical field such as implants used to mimic the structure and function of tissues, dental implants, wound healing, cell regeneration, regenerative medicines, delivery of drugs and different organ regeneration. Organ regeneration leading to replacement of organs such as heart, trachea and lungs etc. by use of specific biomaterials have been reported with the diagnosis of diseases and its treatment.


2021 ◽  
Vol 84 (1) ◽  
Author(s):  
Katharine M. Dibb ◽  
William E. Louch ◽  
Andrew W. Trafford

In mammalian cardiac myocytes, the plasma membrane includes the surface sarcolemma but also a network of membrane invaginations called transverse (t-) tubules. These structures carry the action potential deep into the cell interior, allowing efficient triggering of Ca2+ release and initiation of contraction. Once thought to serve as rather static enablers of excitation-contraction coupling, recent work has provided a newfound appreciation of the plasticity of the t-tubule network's structure and function. Indeed, t-tubules are now understood to support dynamic regulation of the heartbeat across a range of timescales, during all stages of life, in both health and disease. This review article aims to summarize these concepts, with consideration given to emerging t-tubule regulators and their targeting in future therapies. Expected final online publication date for the Annual Review of Physiology, Volume 84 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Zilin Nie ◽  
Yanming Nie

Systems biology has been established for more than a decade in the post-genomic era. With the help of the computational and mathematical tools, systems biology reconstitutes the entire scenario of the cell, tissue and even organism from the pieces data generated in the past decades. However, the modern biology is mainly focusing on the structure and function of the biomolecule, cell, tissue or organ, which are far from the essence of the life because of missing thermodynamic information. It is doubtable that the current systems biology-based omics is no-how to fully understand the dynamic courses of the structure, function and information in life. For this reason, we promote a novel concept of aquamoleculomics, in which the biological structure and function as well as thermodynamic characteristics and bioinformation of the aquamolecule complexes are included in this theoretical model of systems biology. Water is mother of life, matter and matrix of organism. Indeed, the fundamental roles of H2O molecules in biological processes might be dramatically underestimated. Extremely speaking, H2O networks in the living system might be engaged in all the biological processes including building all the biological structures, the residential places of the motherhood molecules as the honeycombs of honeybees.


Author(s):  
Ashwini Kumar Waghmare ◽  
Bhosgikar Anup ◽  
Niyazahmed Kanavi

Every concept of Ayurveda has its own importance. There are many concepts mentioned in the classics are scientific and worth understanding in modern words. Among these concepts Acharya Sushruta mentioned Sapta Kalas in the body. While considering upon the Ashaya they had also thought of the linings making internal walls of the Ashaya, designating them as Kala. They presented it in a very silent way. Among the Sapta Kala, Mamsadhara Kala is one described by Sushruta and other Acharyas. There are 3 layers of connective tissue which extended from the deep fascia and protects and give strength to the skeletal muscle. They are epimysium, perimysium and endomysium, they may extend beyond the muscle fiber to form tendons. So by this we can understand the Mamsadhara Kala in gross anatomy, i.e. fascia or deep fascia and in the histological level it can be taken as Endomysium. So the collection and comprehensive review of information regarding Mamsadhara Kala becomes significant. Hence to unravel and accumulate the hidden scientific information about Mamsadhara Kala, in different resources and its structure and function on common parlon, presents intended research work has been undertaken and planned to carry out.


Sign in / Sign up

Export Citation Format

Share Document