scholarly journals Formulation and Evaluation of Lamivudine Nanosuspension

2021 ◽  
Vol 11 (4-S) ◽  
pp. 71-77
Author(s):  
Yerikala Ramesh ◽  
Ballem Sarayu ◽  
Guduru Hari Chandana ◽  
Obili Neelima ◽  
Shaik Sana

The present research aimed to develop & Evaluation of Lamivudine Nanosuspension. Lamivudine is a potent in vitro inhibitor of human immune deficiency virus belongs to the category of anti-retroviral drugs. The formulated Nanosuspension was subjected to various evaluation parameters like particle size, polydispersity index, zeta potential, drug content, viscosity, saturation solubility studies, In vitro release, treatment of kinetic data, and stability studies. The polydispersity ranged from 0.218 PDI to 0.331 PDI and zeta potential ranged from -1.60 mV to -4.79 mV are the important evaluation parameters are responsible for the stability of nanosuspensions. The Polydispersity index presents the quantity of particle size distribution ranges from 452.4 nm to 532.2 nm. In this result, LNSF4 shows spectacular drug content range of 86±1.8% to 97±2.5% it is the maximum drug content. The Brook field viscometer to determine the viscosity of Lamivudine Nano suspension of different formulations was found to be 44.4±2.1 cps to 87.7±1.4 cps. The general Nanosuspension formulations LNSF4 shows 98.64 % better controlled released in comparison with abundant formulation. In all the cases the best-fit model encounter uoto be peppas with ‘n’ value between 0.768 to 0.917. The ‘n’ value of formulation LNSF4 was 0.876 and suggesting so the drug was released by Zero-order kinetics. Acceleration stability studies intermediate storage condition has been changed from 30°C ± 2°C and 60% RH ± 5% Relative Humidity. After a 90 days study it revolves that there’s no change in Drug content, In vitro drug release, and particle size. Keywords: Lamivudine, Nanosuspension, Saturation solubility, Scanning Electron Microscopy, Stability study.

Author(s):  
YOGITA TYAGI ◽  
N. V. SATHEESH MADHAV

Objective: Development and evaluation of selegiline-loaded bio-nanosuspensions using biopolymer which was isolated from seeds of Buchanania lanzan (Chironji), used as biostabilizer and compared with standard polymer. Methods: The selegiline-loaded bio-nanosuspensions were prepared using novel biopolymer and standard stabilizer (hydroxypropyl methylcellulose) by sonication solvent evaporation method with different ratios (1%, 2%, 3%, 4%, and 5%) and evaluated for particle size, polydispersity index, zeta potential, pH stability studies, percentage entrapment efficacy, in vitro drug release, and stability studies. Results: The prepared selegiline bio-nanosuspensions were subjected to the best formulation based on comparison of above-mentioned evaluation parameters, so Fb2 (2%) formulation was found to be the best formulation showing an R2=0.9842, T50% of 32 h and T80% of 70 h, respectively. According to the release kinetics, the best fit model was found to be Peppas-Korsmeyer with Fickian diffusion (Higuchi matrix) as the mechanism of drug release, and Fs5 (5%) formulation was found to be the best formulation showing an R2=0.9564, T50% of 25 h and T80% of 60 h, respectively. According to the release kinetics, the best fit model was found to be Peppas-Korsmeyer with Fickian diffusion (Higuchi matrix) as the mechanism of drug release. The biopolymer provided excellent stability for the formulation and resulting particle size for the best formulation was found to be 360 nm. The best formulation was found to be polydispersity index of 0.43 with zeta potential of −5.12 mV. Conclusion: The prepared bio-nanosuspensions using biopolymer were found to be safe and compatible with the novel drug delivery for the treatment of depression in comparison of standard polymer.


Author(s):  
Somasundaram I

Aims and Objectives: The present study is to formulate the nanosuspension containing a hydrophilic drug pramipexole dihydrochloride and hesperidin and to increase the drug entrapment efficiency.Methods: Hesperidin and pramipexole dihydrochloride loaded in chitosan nanosuspension is prepared by ionic gelation method using chitosan and tripolyphosphate. There was no incompatibility observed between the drug and polymer through Fourier transform infrared and differential scanning calorimetric. Various other parameters such as particle size, zeta potential, scanning electron microscope, drug content, drug entrapment efficiency, and in vitro release have been utilized for the characterization of nanoparticles.Results and Discussion: The average size of particle is 188 nm; zeta potential is 46.7 mV; drug content of 0.364±0.25 mg/ml; entrapment efficiency of 72.8% is obtained with HPN3 formulation. The PHC1 shows the highest drug release followed by PHC2 due to low concentration of polymer and PHC4 and PHC5 show less drug release due to high concentration of polymer. The in vitro release of PHC3 is 85.2%, initial the burst release is shown which is approximately 60% in 8 h; then, slow release later on drastic reduction in release rate is shown in 24 h. The in vivo study histopathological report confers the effective protective against rotenone induces Parkinson’s.Conclusion: PHC3 was chosen as the best formulation due to its reduced particle size and controlled release at optimum polymer concentration which may be used to treat Parkinson’s disease effectively..


Author(s):  
Rajaa A. Dahash ◽  
Nawal A. Rajab

Many pharmaceutical molecules have solubility problems that until yet consist a hurdle that restricts their use in the pharmaceutical preparations. Lacidipine (LCDP) is a calcium-channel blocker with low aqueous solubility and bioavailability.         Lipid dosage forms are attractive delivery systems for such hydrophobic drug molecules. Nanoemulsion (NE)  is one of the popular methods that has been used to solve the solubility problems of many drugs. LCDP was formulated as a NE utilizing triacetin as an oil phase, tween 80 and tween 60 as a surfactant and ethanol as a co-surfactant. Nine formulas were prepared, and different tests performed to ensure the stability of the NEs, such as thermodynamic stability, particle size, Polydispersity index, zeta potential, dye solubility test, dilution test, drug content test and in-vitro drug release. Results of characterization showed that LCDP NE (F-5) with (oil: Smix (3:1):DDW (10:60:30)) ratio was selected as a best formula, since it have excellent thermodynamic stability with a particle size of 13.42, low PDI 0.234 , zeta potential (-14.5mV), efficient electrical    conductivity  0.241ms/cm , good pH value (5.9), good percent of light transmittance (99.10%) , with  acceptable viscosity , higher percent of drug content (99.14%) and complete release of the drug after (30 min.) with significantly higher (P<0.05)   dissolution rate in comparison with pure drug powder.      From the results obtained NE was found to be an efficient method to enhance the solubility and dissolution rate of drugs that have poor water solubility (lipophilic drugs).    


Author(s):  
Sumaya B. Hamed ◽  
Shaimaa N. Abd Alhammid

            Felodipine is a calcium-channel blocker with low aqueous solubility and bioavailability. Lipid dosage forms are attractive delivery systems for such hydrophobic drug molecules. Nanoemulsion (NE) is one of the popular methods that has been used to solve the dispersibility problems of many drugs. Felodipine was formulated as a NE utilizing oleic acid as an oil phase, tween 80 and tween 60 as surfactants and ethanol as a co-surfactant. Eight formulas were prepared, and different tests were performed to ensure the stability of the NEs, such as particle size, polydispersity index, zeta potential, dilution test, drug content, viscosity and in-vitro drug release. Results of characterization showed that felodipine nanoemulsion (F3) with (oleic acid 10%) ,(Smix 60% of tween80 :ethanol in a ratio of 3:1), (DDW 30%) was selected as the best formula, since it has a particle size of (17.01)nm, low PDI (0.392), zeta potential (-22.34mV), good dilution without drug precipitation , higher percent of drug content (99.098%) with  acceptable viscosity , and complete release of the drug after (45 min.) with significantly higher (P<0.05)   dissolution  rate in comparison with the pure drug powder. The selected formula (F3) subjected to further investigations as drug and excipient compatibility study by Fourier transform infrared spectroscopy (FTIR) The outcomes of the (FTIR) explain that the distinctive peaks for felodipine were not affected by other components and displayed the same functional group's band with very slight shifting. This indicates that there was no interaction between felodipine and other NE components. Therefore, these excipients were found to be compatible with felodipine. In conclusion, the NE was found to be an efficient method to enhance the dispersibility and permeatioins of drugs that have poor water solubility (lipophilic drugs).


2020 ◽  
Vol 10 (3) ◽  
pp. 408-417
Author(s):  
Jyotsana R. Madan ◽  
Izharahemad N. Ansari ◽  
Kamal Dua ◽  
Rajendra Awasthi

Purpose : The objective of this work was to formulate casein (CAS) nanocarriers for the dissolution enhancement of poorly water soluble drug celecoxib (CLXB). Methods: The CLXB loaded CAS nanocarriers viz., nanoparticles, reassembled CAS micelles and nanocapsules were prepared using sodium caseinate (SOD-CAS) as a carrier to enhance the solubility of CLXB. The prepared formulations were characterized for particle size, polydispersity index, zeta potential, percentage entrapment efficiency, and surface morphology for the selection of best formulation. Fourier transform infrared spectroscopy, differential scanning calorimetry and X-ray powder diffraction study was used to for the confirmation of encapsulation of CLXB. Further, in vitro drug dissolution, ex-vivo permeation studies on chicken ileum and stability studies were carried out. Results: The CLXB loaded casein nanoparticles (CNP) (batch A2) showed a particle size diameter 216.1 nm, polydispersity index 0.422 with percentage entrapment efficiency of 90.71% and zeta potential of -24.6 mV. Scanning electron microscopy of suspension confirmed globular shape of CNP. The in vitro release data of optimized batch followed non Fickian diffusion mechanism. The ex vivo permeation studies on chicken ileum of CLXB loaded CNP showed permeation through mucous membrane as compared to pure CLXB. The apparent permeability of best selected freeze dried CLXB loaded CNP (batch A2) was higher and gradually increased from 0.90 mg/cm2 after 10 min to a maximum of 1.95 mg/cm2 over the subsequent 90 min. A higher permeation was recorded at each time point than that of the pure CLXB. Conclusion: The study explored the potential of CAS as a carrier for solubility enhancement of poorly water soluble drugs.


Author(s):  
DIVYA SANGANABHATLA ◽  
R. SHYAM SUNDER

Objective: The present paper describes the development and evaluation of a Novel Finasteride (FSD) nanogel topical delivery for the treatment of Androgenetic Alopecia. Nano-based topical formulation was chosen to enhance the solubility, permeability, biocompatibility of drug and to overcome the problems associated with the oral delivery of finasteride. Methods: Various trails batches were prepared by using probe sonication method. Based on stability studies and particle size, NP4 trail was optimized which exhibited a spherical shape with a mean diameter of 113.80±0.72, the polydispersity of 0.28±0.01, zeta potential of-25.2 mV, drug entrapment efficiency of 92.67±0.47 %, and drug loading of 6.15±0.02 %. Storage stability studies demonstrated that the particle size and entrapment efficiency were not changed during 3 mo both at 4 °C and room temperature. Finasteride (FSD) NLCs were characterized for particle size by scanning electron microscope (SEM), chemical state by X-Ray diffraction (XRD), physical stability by centrifugation and thermodynamic stability by Freeze-thaw method. These prepared nanoparticles were transformed into topical nanogel and further evaluated. Results: Among the different trails, C2 trail of NLC gel has shown excellent gelling capacity, clear appearance, good viscosity characteristics and was selected for further evaluation studies. Batches of topical nanogel were characterized through pH, homogeneity, spreadability, viscosity, drug content and in vitro drug release study. Based on pH (6.5-6.8), drug content (91.25±0.9%), spreadability (6.7 cm/sec), C2 batch was subjected to In vitro skin occlusivity study, in-vitro release study and In vitro heamolysis study. Conclusion: The percent cumulative drug release for Finasteride (FSD) gel was found to be 758.52±1.49 µg at 24 h which is quite higher than plain gel and Finasteride (FSD) gel showed maximum occlusiveness and excellent spreadability and found to be stable. In conclusion, prepared Finasteride (FSD) Nanogel could be used with promising potential for the treatment of Androgenetic Alopecia.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1485
Author(s):  
Yogeeta O. Agrawal ◽  
Umesh B. Mahajan ◽  
Vinit V. Agnihotri ◽  
Mayur S. Nilange ◽  
Hitendra S. Mahajan ◽  
...  

Ezetimibe (EZE) possesses low aqueous solubility and poor bioavailability and in addition, its extensive hepatic metabolism supports the notion of developing a novel carrier system for EZE. Ezetimibe was encapsulated into nanostructured lipid carriers (EZE-NLCs) via a high pressure homogenization technique (HPH). A three factor, two level (23) full factorial design was employed to study the effect of amount of poloxamer 188 (X1), pressure of HPH (X2) and number of HPH cycle (X3) on dependent variables. Particle size, polydispersity index (PDI), % entrapment efficiency (%EE), zeta potential, drug content and in-vitro drug release were evaluated. The optimized formulation displays pragmatic inferences associated with particle size of 134.5 nm; polydispersity index (PDI) of 0.244 ± 0.03; zeta potential of −28.1 ± 0.3 mV; % EE of 91.32 ± 1.8% and % CDR at 24-h of 97.11%. No interaction was observed after X-ray diffraction (XRD) and differential scanning calorimetry (DSC) studies. EZE-NLCs (6 mg/kg/day p.o.) were evaluated in the high fat diet fed rats induced hyperlipidemia in comparison with EZE (10 mg/kg/day p.o.). Triglyceride, HDL-c, LDL-c and cholesterol were significantly normalized and histopathological evaluation showed normal structure and architecture of the hepatocytes. The results demonstrated the superiority of EZE-NLCs in regard to bioavailability enhancement, dose reduction and dose-dependent side effects.


Crystals ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 286 ◽  
Author(s):  
Shadab Md ◽  
Bradon Kit ◽  
Sumeet Jagdish ◽  
Dexter David ◽  
Manisha Pandey ◽  
...  

Zerumbone extracted from the volatile oil of rhizomes available from the Zinigiber zerumbet has promising pharmacological activity. However, it has poor aqueous solubility and dissolution characteristics. To improve this, a nanosuspension formulation of zerumbone was developed. Nanosuspensions were formulated using high-pressure homogenization (HPH) with sodium dodecyl sulphate (SDS) and hydroxypropylmethylcellulose (HPMC) as stabilizers; the formulation was optimized and freeze dried. The optimized nanosuspension product was evaluated using an optical light microscope, photon correlation spectroscopy (PCS), polydispersity index, zeta potential, SEM, differential scanning calorimetry (DSC) and FT-IR. The physical stability of the nanosuspensions was evaluated for 30 days at 4 °C, 25 °C, and 37 °C. To validate the theoretical benefit of the increased surface area, we determined an in vitro saturation solubility and dissolution profile. The mean particle size, polydispersity index and zeta potential of the zerumbone nanosuspensions stabilized by SDS versus HPMC were found to be 211 ± 27 nm vs. 398 ± 3.5 nm, 0.39 ± 0.06 vs. 0.55 ± 0.004, and −30.86 ± 2.3 mV vs. −3.37 ± 0.002 mV, respectively. The in vitro saturation solubility and dissolution revealed improved solubility for the zerumbone nanosuspension. These results suggested that the nanosuspensionlization improves the saturation solubility and dissolution profile of zerumbone, which may facilitate its use as a therapeutic agent in the future.


2019 ◽  
Vol 11 (1) ◽  
pp. 191 ◽  
Author(s):  
Yogita Tyagi ◽  
N. V. Satheesh Madhav

Objective: Design and evaluation of fluvoxamine loaded bio-nanosuspensions using biopolymer which was isolated from the wood of Santalum album used as the stabilizer.Methods: The main aim of the present investigation was to obtain an ocular drug delivery system with improved stability using biopolymer. The fluvoxamine loaded Bio-nanosuspension was prepared using novel biopolymer isolated from Santalum album by sonication solvent evaporation method with different ratios (1%, 2%, 3%, 4% and 5%) and evaluated for particle size, polydispersity index, zeta potential, pH stability studies, %entrapment efficacy, in vitro drug release, stability studies.Results: The prepared bio-nanosuspension was subjected to the best formulation based on the comparison of above-mentioned evaluation parameters, so Fb3 (3%) formulation was found to be the best formulation showing an R2 value of 0.9744, T50% of 31.3 h and T80% of 50.1 h respectively. According to the release kinetics, the best fit model was found to be Peppas Korsmeyer with Fickian Diffusion (Higuchi Matrix) as the mechanism of drug release. Santalum album provided excellent stability for the formulation, and resulting particle size for the best formulation was found to be 196 nm. The bio-nanosuspension had Polydispersity Index (PDI) of 0.19 with zeta potential of-20mV.Conclusion: The prepared bio-nanosuspension was found to be safe and compatible with the ophthalmic delivery for treatment of depression.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 367 ◽  
Author(s):  
Bwalya A. Witika ◽  
Vincent J. Smith ◽  
Roderick B. Walker

Lamivudine (3TC) and zidovudine (AZT) are antiviral agents used to manage HIV/AIDS infection. The compounds require frequent dosing, exhibit unpredictable bioavailability and a side effect profile that includes hepato- and haema-toxicity. A novel pseudo one-solvent bottom-up approach and Design of Experiments using sodium dodecyl sulphate (SDS) and α-tocopheryl polyethylene glycol succinate 1000 (TPGS 1000) to electrosterically stablize the nano co-crystals was used to develop, produce and optimize 3TC and AZT nano co-crystals. Equimolar solutions of 3TC in surfactant dissolved in de-ionised water and AZT in methanol were rapidly injected into a vessel and sonicated at 4 °C. The resultant suspensions were characterized using a Zetasizer and the particle size, polydispersity index and Zeta potential determined. Optimization of the nanosuspensions was conducted using a Central Composite Design to produce nano co-crystals with specific identified and desirable Critical Quality Attributes including particle size (PS) < 1000 nm, polydispersity index (PDI) < 0.500 and Zeta potential (ZP) < −30mV. Further characterization was undertaken using Fourier Transform infrared spectroscopy, energy dispersive X-ray spectroscopy, differential scanning calorimetry, powder X-ray diffraction and transmission electron microscopy. In vitro cytotoxicity studies revealed that the optimized nano co-crystals reduced the toxicity of AZT and 3TC to HeLa cells.


Sign in / Sign up

Export Citation Format

Share Document