scholarly journals Formulation and Characterization of Felodipine as an Oral Nanoemulsions

Author(s):  
Sumaya B. Hamed ◽  
Shaimaa N. Abd Alhammid

            Felodipine is a calcium-channel blocker with low aqueous solubility and bioavailability. Lipid dosage forms are attractive delivery systems for such hydrophobic drug molecules. Nanoemulsion (NE) is one of the popular methods that has been used to solve the dispersibility problems of many drugs. Felodipine was formulated as a NE utilizing oleic acid as an oil phase, tween 80 and tween 60 as surfactants and ethanol as a co-surfactant. Eight formulas were prepared, and different tests were performed to ensure the stability of the NEs, such as particle size, polydispersity index, zeta potential, dilution test, drug content, viscosity and in-vitro drug release. Results of characterization showed that felodipine nanoemulsion (F3) with (oleic acid 10%) ,(Smix 60% of tween80 :ethanol in a ratio of 3:1), (DDW 30%) was selected as the best formula, since it has a particle size of (17.01)nm, low PDI (0.392), zeta potential (-22.34mV), good dilution without drug precipitation , higher percent of drug content (99.098%) with  acceptable viscosity , and complete release of the drug after (45 min.) with significantly higher (P<0.05)   dissolution  rate in comparison with the pure drug powder. The selected formula (F3) subjected to further investigations as drug and excipient compatibility study by Fourier transform infrared spectroscopy (FTIR) The outcomes of the (FTIR) explain that the distinctive peaks for felodipine were not affected by other components and displayed the same functional group's band with very slight shifting. This indicates that there was no interaction between felodipine and other NE components. Therefore, these excipients were found to be compatible with felodipine. In conclusion, the NE was found to be an efficient method to enhance the dispersibility and permeatioins of drugs that have poor water solubility (lipophilic drugs).

Author(s):  
ARVIND GANNIMITTA ◽  
PRATHIMA SRINIVAS ◽  
VENKATESHWAR REDDY A ◽  
PEDIREDDI SOBHITA RANI

Objective: The main objective of this study was to prepare and evaluate the nanocrystal formulation of docetaxel. Methods: Docetaxel nanocrystals were formulated to improve the water solubility. Docetaxel nanocrystals were prepared by nanoprecipitation method using Tween 80, egg lecithin, and povidone C-12 as stabilizers and poly(lactic-co-glycolic acid) (PLGA) as polymer in acceptable limits. A total of 16 formulations were prepared by changing stabilizer and polymer ratios. The prepared nanocrystals were characterized by particle size, zeta potential, crystalline structure, surface morphology, assay, saturation solubility, and in vitro drug release. Results: Based on particle size, polydispersity index, and zeta potential data, four formulations were optimized. The formulation containing Tween 80 as stabilizer has shown lowest particle size and better drug release than the formulations containing egg lecithin and povidone C-12 as stabilizers. The formulation containing Tween 80 and PLGA has shown still lower sized particles than the Tween 80 alone and exhibited prolonged sustained drug release. The release kinetics of formulations containing Tween 80 and PLGA followed zero-order release kinetics and formulations containing egg lecithin and povidone C-12 followed Higuchi diffusion (non-Fickian). Conclusion: From the study, we concluded that as the type and concentration of stabilizer changed the size and shape of the crystals were also changed and the formulations showed sustained drug release with non-Fickian diffusion.


Author(s):  
Rajaa A. Dahash ◽  
Nawal A. Rajab

Many pharmaceutical molecules have solubility problems that until yet consist a hurdle that restricts their use in the pharmaceutical preparations. Lacidipine (LCDP) is a calcium-channel blocker with low aqueous solubility and bioavailability.         Lipid dosage forms are attractive delivery systems for such hydrophobic drug molecules. Nanoemulsion (NE)  is one of the popular methods that has been used to solve the solubility problems of many drugs. LCDP was formulated as a NE utilizing triacetin as an oil phase, tween 80 and tween 60 as a surfactant and ethanol as a co-surfactant. Nine formulas were prepared, and different tests performed to ensure the stability of the NEs, such as thermodynamic stability, particle size, Polydispersity index, zeta potential, dye solubility test, dilution test, drug content test and in-vitro drug release. Results of characterization showed that LCDP NE (F-5) with (oil: Smix (3:1):DDW (10:60:30)) ratio was selected as a best formula, since it have excellent thermodynamic stability with a particle size of 13.42, low PDI 0.234 , zeta potential (-14.5mV), efficient electrical    conductivity  0.241ms/cm , good pH value (5.9), good percent of light transmittance (99.10%) , with  acceptable viscosity , higher percent of drug content (99.14%) and complete release of the drug after (30 min.) with significantly higher (P<0.05)   dissolution rate in comparison with pure drug powder.      From the results obtained NE was found to be an efficient method to enhance the solubility and dissolution rate of drugs that have poor water solubility (lipophilic drugs).    


2018 ◽  
Vol 8 (5-s) ◽  
pp. 341-347
Author(s):  
Shreyasi Sharma ◽  
Eisha Ganju ◽  
Neeraj Upmanyu ◽  
Prabhat Jain

Curcumin (diferuloylmethane) is a natural polyphenolic compound with potent anti-inflammatory, anticancer and antioxidant activities. However, its bioavailability is low as it is poorly absorbed in the gastrointestinal tract. Microemulsions offer the potential to improve the solubility and bioavailability of bioactive compounds; the present work investigated the topical delivery potential of microemulsion gel loaded with curcumas. Curcumin microemulsion was prepared by spontaneous emul­sification method using oil (Oleic acid), surfactant:cosurfactant (Smix) (Ethanol and Tween 80, Span 80 and n Butanol) and water. The optimized formulations of microemulsions were subjected to thermodynamic stability tests. After stability study, stable formulation was characterized for droplet size, pH determination, centrifugation, % drug content in microemulsion, zeta potential and vesicle size measurement and then microemulsion gel were prepared and characterized for spreadability, measurement of viscosity, drug content, In-vitro diffusion, in-vitro release data. Tween 80, Span 80 was selected as surfactant, ethanol, n Butanol as co surfactant and Oleic acid as oil component based on solubility study. The optimized formulation contained Curcumin (10 mg). The in vitro drug release from curcumin microemulsion gel was found to be considerably higher in comparison to that of the pure drug. The in-vitro diffusion of microemulsion gel was significantly good. Based on this study, it can be concluded the solubility and permeability of curcumin can be increased by formulating into microemulsion gel. Keyword: Curcumin, Microemulsion, In-vitro diffusion, Spreadability, Zeta potential, Stability, span 40


Author(s):  
Mohsen Hedaya ◽  
Farzana Bandarkar ◽  
Aly Nada

Introduction: The objectives were to prepare, characterize and in vivo evaluate different ibuprofen (IBU) nanosuspensions prepared by ultra-homogenization, after oral administration to rabbits. Methods: The nanosuspensions produced by ultra-homogenization were tested and compared with a marketed IBU suspension for particle size, in vitro dissolution and in vivo absorption. Five groups of rabbits received orally 25 mg/kg of IBU nanosuspension, nanoparticles, unhomogenized suspension, marketed product and untreated suspension. A sixth group received 5 mg/kg IBU intravenously. Serial blood samples were obtained after IBU administration. Results: The formulated nanosuspensions showed significant decrease in particle size. Polyvinyl Pyrrolidone K30 (PP) was found to improve IBU aqueous solubility much better than the other tested polymers. Addition of Tween 80 (TW), in equal amount as PP (IBU: PP:TW, 1:2:2 w/w) resulted in much smaller particle size and better dissolution rate. The Cmax achieved were 14.8±1.64, 11.1±1.37, 9.01±0.761, 7.03±1.38 and 3.23±1.03 μg/ml and the tmax were 36±8.2, 39±8.2, 100±17.3, 112±15 and 105±17 min for the nanosuspension, nanoparticle, unhomogenized suspension, marketed IBU suspension and untreated IBU suspension in water, respectively. Bioavailability of the different formulations relative to the marketed suspension were the highest for nanosuspension> unhomogenized suspension> nanoparticles> untreated IBU suspension. Conclusion: IBU/PP/TW nanosuspensions showed enhanced in vitro dissolution as well as faster rate and higher extent of absorption as indicated from the higher Cmax, shorter tmax and larger AUC. The in vivo data supported the in vitro results. Nanosuspensions prepared by ultra-high-pressure-homogenization technique can be used as a good formulation strategy to enhance the rate and extent of absorption of poorly soluble drugs.


Author(s):  
Himanshu Paliwal ◽  
Ram Singh Solanki ◽  
Chetan Singh Chauhan

The purpose of conducting this study was to prepare an oral microemulsion formulation of Rosuvastatin calcium (RC) to improve its water solubility. Oil in water microemulsion was formulated using Oleic acid, Tween 80 and Polyethylene Glycol-400(PEG-400) as oil, surfactant and co-surfactant, respectively. The ideal proportion of surfactant: co-surfactant (Smix) was chosen by constructing pseudoternary diagrams. The microemulsion formulations which proved to be stable after thermodynamic stability testing were further evaluated for physical characteristics. Selected formulations were evaluated for droplet size, zeta potential, polydispersity index, viscosity and % drug content. The results were suggestive that optimized microemulsion formulation (F2) was thermodynamically stable and clear having a droplet size of 74.29 nm and zeta potential of -18.44.  In vitro dissolution study for optimized microemulsion was performed using a dialysis bag method and cumulative % drug release was determined. The result from the release study was indicative of improved solubility of Rosuvastatin calcium which may serve to boost up the oral bioavailability of drug.


Author(s):  
Somasundaram I

Aims and Objectives: The present study is to formulate the nanosuspension containing a hydrophilic drug pramipexole dihydrochloride and hesperidin and to increase the drug entrapment efficiency.Methods: Hesperidin and pramipexole dihydrochloride loaded in chitosan nanosuspension is prepared by ionic gelation method using chitosan and tripolyphosphate. There was no incompatibility observed between the drug and polymer through Fourier transform infrared and differential scanning calorimetric. Various other parameters such as particle size, zeta potential, scanning electron microscope, drug content, drug entrapment efficiency, and in vitro release have been utilized for the characterization of nanoparticles.Results and Discussion: The average size of particle is 188 nm; zeta potential is 46.7 mV; drug content of 0.364±0.25 mg/ml; entrapment efficiency of 72.8% is obtained with HPN3 formulation. The PHC1 shows the highest drug release followed by PHC2 due to low concentration of polymer and PHC4 and PHC5 show less drug release due to high concentration of polymer. The in vitro release of PHC3 is 85.2%, initial the burst release is shown which is approximately 60% in 8 h; then, slow release later on drastic reduction in release rate is shown in 24 h. The in vivo study histopathological report confers the effective protective against rotenone induces Parkinson’s.Conclusion: PHC3 was chosen as the best formulation due to its reduced particle size and controlled release at optimum polymer concentration which may be used to treat Parkinson’s disease effectively..


2019 ◽  
Vol 9 (4-A) ◽  
pp. 183-190
Author(s):  
A. Manaswitha ◽  
P. V. L. D. Sai Swetha ◽  
N.K.D. Devi ◽  
K. Naveen Babu ◽  
K. Ravi Shankar

The objective of the present study is to formulate and evaluate ofloxacin emulgel. Emulgel formulations of ofloxacin were prepared using different concentrations of gelling agent’s Carbopol-940 and Xanthum gum. Tween-80 and span-80 were used as emulsifiers and propylene glycol as a humectant in the preparation of emulgel. The effect of the concentration of gelling agent on the drug release from the prepared emulgel was investigated. The compatibility study was conducted using Fourier-transform infrared (FTIR). The formulated emulgel was characterized by their physical appearance, pH determination, viscosity, spreadability, drug content, microbial test and in vitro diffusion study. FTIR indicated that the drug and excipients used in the study are compatible with each other. All the prepared formulations showed acceptable physical properties, homogeneity, consistency, spreadability, viscosity, and pH value. Drug release from all the formulations depended upon the concentration of the polymer used. As the concentration of Carbopol 940 increased the spreadability and drug release was found to be decreased. Emulgels formulated with oleic acid gave a much higher release rate of ofloxacin than emulgels formulated with liquid paraffin. The release of drug from all the emulgels prepared followed Zero-order kinetics. The linear Higuchi plots indicated that the drug release from all the emulgels prepared followed diffusion kinetics. Emulgel formulated with oleic acid exhibited greater flux when compared with those formulated with liquid paraffin. The formulations were found to be stable during stability testing. It can be concluded that Carbopol 940 and oleic acid are recommended for the formulation and preparation of Ofloxacin emulgels for topical drug delivery. Key words: Ofloxacin, Emulgel, Spreadibility, Zone of inhibition.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1812
Author(s):  
Mohammed Elmowafy ◽  
Khaled Shalaby ◽  
Mohammad M. Al-Sanea ◽  
Omnia M. Hendawy ◽  
Ayman Salama ◽  
...  

Luteolin is a natural drug used as an antioxidant and anti-inflammatory, but unfortunately, it possesses low water solubility, which hinders its delivery via the skin. The main objective of this study was to prepare a luteolin-loaded nanosuspension by the antisolvent precipitation/sonication technique and study the effects of four stabilizers (two nonionic stabilizers, Pluronic F127 and Tween 80, and two polymeric stabilizers, HPMC and alginate) on the physicochemical properties of the prepared formulations. The selected formulations were incorporated into a gel base to evaluate their skin permeability and anti-inflammatory efficacy. The particle size was in the nanosize range (in the range from 468.1 ± 18.6 nm to 1024.8 ± 15.9 nm), while the zeta potential was negative and in the range from −41.7 ± 6.3 mV to −15.3 ± 1.9 mV. In particular, alginate-stabilized nanosuspensions showed the smallest particle size, the highest zeta potential value, and excellent stability due to the dual stabilizing effects (electrostatic and steric effects). The DSC results revealed a less crystalline structure of luteolin in lyophilized NS2 and NS12. Formulations stabilized by 1% Pluronic (NS2) and 2% alginate (NS12) were incorporated into a carbopol 940 gel base and showed good organoleptic character (homogenous with no evidenced phase separation or grittiness). In vitro dissolution studies showed that NS12 enhanced luteolin release rates, indicating the effect of particle size on the drug release pattern. On the other hand, NS2 showed enhanced skin permeability and anti-inflammatory effect in a carrageenan-induced paw edema model, revealing the surface activity role of the stabilizers. In conclusion, while alginate increased the nanosuspension stability by means of dual stabilizing effects, Pluronic F127 improved the skin delivery and pharmacodynamic efficacy of luteolin.


Author(s):  
ASHWINI JADHAV ◽  
BINOY VARGHESE CHERIYAN

Objective: The main aim of this study to formulate a nifedipine-loaded nanocarrier for improving solubility and bioavailability. Methods: To improve the solubility of drug, nifedipine-loaded nanocarrier (lipotomes) were prepared by using the film lipid hydration technique. lipotomes were prepared by using tween 80, which is used for increasing solubility and cetyl alcohol for lipophilic environment. Drug excipients interaction determined by FTIR. lipotomes were characterized for particle size, Entrapment efficiency and zeta potential. lipotomes were optimized by using Design-Expert 12 software. Optimized formula further lyophilized by using different cyroproyectant to improve the stability and oral administration of the drug. Results: FTIR shows there was no interaction between formulation ingredients. Mean particle size, entrapment efficiency, zeta potential was determined and found to be 308.1 nm, 96.7%, 20.1mV, respectively. Surface morphology of lipotomes was observed by a scanning electron microscope (SEM). Optimized lipotomes was lyophilized with Mannitol (8% w/v) was the ideal cryoprotectant to retain the physicochemical characteristics of the OLT formulation after lyophilization. Conclusion: Nifedipine loaded nanocarrier was successfully prepared, using film hydration method. Which have good particle size, EE% and zeta potential. After lyophilization no significant changes was observed in particle size with good physical stability, so it could be a good choice for conventional drug delivery system by doing further investigation as in vitro and in vivo study


Author(s):  
PANKAJ JADHAV ◽  
ADHIKRAO YADAV

Objective: At present, more than 40% of drugs are poorly water-soluble that leads to reduced bioavailability. The objective of the present investigation was to overcome the issue of poor aqueous solubility of drug; therefore, stable flurbiprofen (FBF) nanosuspensions were developed by nanoprecipitation method. Materials and Methods: Based on particle size, zeta potential, and entrapment efficiency, the polymeric system of hydroxypropyl methylcellulose E15 and poloxamer 188 was used effectively. The prepared formulations were evaluated for Fourier transform infrared spectroscopy, transmission electron microscopy, differential scanning calorimetry, powder X-ray diffraction, saturation solubility, entrapment efficiency, particle size, zeta potential, dissolution profile, and stability. Results: The resultant FBF nanosuspensions depicted particles in size range of 200–400 nm and were physically stable. After nanonization, the crystallinity of FBF was slightly reduced in the presence of excipients. The aqueous solubility and dissolution rate of all FBF nanosuspensions were significantly increased as compared with FBF powder. Conclusion: This investigation demonstrated that nanoprecipitation is a promising method to develop stable polymeric nanosuspension of FBF with significant increase in its aqueous solubility.


Sign in / Sign up

Export Citation Format

Share Document