scholarly journals The effects of combined essential oils along with fumarate on rumen fermentation and methane production in vitro

2012 ◽  
Vol 21 (1) ◽  
pp. 198-210 ◽  
Author(s):  
B. Lin ◽  
Y. Lu ◽  
J. Wang ◽  
Q. Liang ◽  
J. Liu
2022 ◽  
Vol 10 (1) ◽  
pp. 1-9
Author(s):  
Aarón A. Molho-Ortiz ◽  
Atmir Romero-Pérez ◽  
Efrén Ramírez-Bribiesca ◽  
Claudia C. Márquez-Mota ◽  
Francisco A. Castrejón-Pineda ◽  
...  

2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 445-446
Author(s):  
Aaron A Molho-Ortiz ◽  
Atmir Romero-Pérez ◽  
Efren Ramírez-Bribiesca ◽  
Claudia Marquez-Mota ◽  
Juan Carlos Ramírez-Orejel ◽  
...  

Abstract The objective of this study was to evaluate the effects of eight phytochemicals from four plant species, in two presentations, essential oils (EO) and aqueous extracts (AE) of garlic (GEO, GAE), cinnamon (CEO, CAE), eucalyptus (EEO, EAE) and rosemary (REO, RAE) on rumen fermentation, using the in vitro gas production technique. The experiment was set up as a completely randomized block design in a 2 × 4 factorial arrangement of treatments. All treatments were incubated with 0.5 g of a basal diet (BD; 50% concentrate, 20% alfalfa and 30% corn silage, dry matter basis). Additionally, BD and BD with 30 ppm of sodium monensin (MON) were used as controls. Phytochemicals were evaluated at a single dose of 900 mg/L of inoculum. In vitro dry matter digestibility (IVDMD), maximum volume of gas (Vmax), gas production rate (S) and lag phase (L) were evaluated. Methane (CH4) was determined indirectly, by fixation of CO2present in gas samples with 1M KOH solution, Non-fixed gas was assumed to be CH4. Methane production was correlated with organic matter fermented in the rumen (mL CH4/g OMFR). Data were analyzed using PROC MIXED of SAS ©. The effects of treatments were tested for the following contrasts: EO Vs AE, W Vs EO, W Vs AE. Some essential oils (GEO, CEO, REO) decreased CH4 production (mL CH4/g OMFR) and IVDMD by 20.4% and 17.8% compared to control treatments (BD and MON) (P < 0.05). Aqueous extracts showed a similar response (P < 0.05) to control treatments. In conclusion the use of essential oils negatively affected rumen fermentation and the production of CH4 in P cinnamon essential oil.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Avijit Dey ◽  
Shyam Sundar Paul ◽  
Puran Chand Lailer ◽  
Satbir Singh Dahiya

AbstractEnteric methane production contributes significantly to the greenhouse gas emission globally. Although, buffaloes are integral part of livestock production in Asian countries, contributing milk, meat and draft power, the contribution of enteric methane to environmental pollution attracts attention. The present study investigated the efficacy of garlic (Allium sativum) oil in reducing enteric methane production from buffaloes (Bubalus bubalis) by in vitro rumen fermentation. Garlic oil (GOL) was tested at four concentrations [0 (Control), 33.33 µl (GOL-1), 83.33 µl (GOL-2) and 166.66 µl (GOL-3) per litre of buffered rumen fluid] in 100-ml graduated glass syringes and incubated at 39℃ for 24 h for in vitro rumen fermentation study. Supplementation of GOL-1 increased (p < 0.05) total gas production in comparison with GOL-3; however, it remained comparable (p > 0.05) with control and GOL-2. Graded doses of garlic oil inclusions reduced (p < 0.001) methane concentration (%) in total gas and total methane production (ml/g DM), irrespective of concentrations. The feed degradability, volatile fatty acids and microbial biomass production (MBP) were not affected (p > 0.05) by GOL-1, but these tended to decrease in GOL-2 with marked reduction (p < 0.01) in GOL-3. The decrease (p < 0.01) in NH3–N concentration in fermentation fluid in the presence of garlic oil, irrespective of concentration, suggests reduced deamination by inhibiting rumen proteolytic bacterial population. The activities of ruminal fibrolytic enzymes (CMCase, xylanase, β-glucosidase, acetyl esterase) were not affected by lower dose (GOL-1) of garlic oil; however, reduction (p < 0.05) of these enzymes activity in rumen liquor was evident at higher doses (GOL-2 and GOL-3) of supplementation. This study shows positive impact of garlic oil supplementation at low dose (33.33 µl/l of rumen fluid) in reducing enteric methane production, thereby, abatement of environmental pollution without affecting feed digestibility.


2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 132-132
Author(s):  
Sergio Calsamiglia ◽  
Maria Rodriguez-Prado ◽  
Gonzalo Fernandez-Turren ◽  
Lorena Castillejos

Abstract In the last 20 years there has been extensive in vitro research on the effects of plant extracts and essential oils on rumen microbial fermentation. The main objectives have been to improve energy metabolism through a reduction in methane emissions and an increase in propionate production; and to improve protein metabolism by reducing proteolysis and deamination. While the positive results from in vitro studies has stimulated the release of commercial products based on blends of essential oils, there is limited in vivo evidence on the rumen fermentation and production performance effects. A literature search was conducted to select in vivo studies where information on rumen fermentation and animal performance was reported. For dairy cattle, we identified 37 studies of which 21 were adequate to test production performance. Ten studies reported increases and 3 decreases in milk yield. For beef cattle, we identified 20 studies with rumen fermentation profile and 22 with performance data. Average daily gain improved in 7 and decreased in 1 study. Only 1 out of 16 studies reported an improvement in feed efficiency. Data indicate that out of more than 500 products tested in vitro, only around 20 have been tested in vivo in different mixtures and doses. The use of statistical approaches will allow to describe the conditions, doses and responses in dairy and beef cattle performance. The search for postruminal effects offers another alternative use. Evidence for effects on the intestinal and systemic effects on the immune system and antioxidant status (i.e., capsicum, garlic, eugenol, cinnamaldehyde curcuma, catechins, anethol or pinene), and in the modulation of metabolic regulation (capsicum, cinnamaldehyde, curcuma or garlic) may open the opportunity for future applications. However, stability of the product in the GI tract, description of the mechanisms of action and the impact of these changes on performance needs to be further demonstrated.


2019 ◽  
Vol 59 (4) ◽  
pp. 709 ◽  
Author(s):  
F. Garcia ◽  
P. E. Vercoe ◽  
M. J. Martínez ◽  
Z. Durmic ◽  
M. A. Brunetti ◽  
...  

The aim of the present study was to evaluate the impact of essential oils (EO) from Lippia turbinata (LT) and Tagetes minuta (TM) as well as the rotation of both EO on fermentation parameters in vitro. Daily addition of LT, TM, or a 3-day rotation between them (TM/LT), as well as a control (without EO), was evaluated using the rumen simulation technique (Rusitec). The experiment lasted 19 days, with a 7-day adaptation period, followed by 12 days of treatment (Days 0–12). The EO were dissolved in ethanol (70% vol/vol) to be added daily to fermenters (300 μL/L) from Day 0. Daily measurements included methane concentration, total gas production, apparent DM disappearance and pH, which started 2 days before the addition of treatments. On Days 0, 4, 8 and 12 apparent crude protein disappearance and neutral detergent fibre disappearance, ammonia and volatile fatty acid concentration and composition were determined. Methane production was significantly inhibited shortly after addition of both EO added individually, and persisted over time with no apparent adaptation to EO addition. The TM/LT treatment showed a similar effect on methane production, suggesting that rotating the EO did not bring further improvements in reduction or persistency compared with the inclusion of the EO individually. Gas production, total volatile fatty acid concentration and composition and apparent crude protein disappearance were not affected by EO addition. Compared with the control, a 5% reduction of apparent DM disappearance and a 15% reduction of neutral detergent fibre disappearance were observed with the addition of EO. Only TM and TM/LT reduced ammonia concentration. Given the significant and persistent antimethanogenic activity of both EO, and the potential of T. minuta to modify nitrogen metabolism, EO from these plant species are of interest for developing new feed additives with potential application in ruminant nutrition that are also likely to be acceptable to consumers.


2014 ◽  
Vol 59 (No. 10) ◽  
pp. 450-459 ◽  
Author(s):  
M. Gunal ◽  
A. Ishlak ◽  
A.A. AbuGhazaleh ◽  
W. Khattab

The effects of adding essential oils (EO) at different levels (125, 250, 500 mg/l) on rumen fermentation and biohydrogenation were examined in a rumen batch culture study. Treatments were: control without EO (CON), control with anise oil (ANO), cedar wood oil (CWO), cinnamon oil (CNO), eucalyptus oil (EUO), and tea tree oil (TEO). Essential oils, each dissolved in 1 ml of ethanol, were added to the culture flask containing 40 ml of buffer solution, 2 ml of reduction solution, 10 ml of rumen fluid, 25 mg of soybean oil, and 0.5 g of the diet. After 24 h of incubation in a water batch at 39&deg;C, three samples were collected from each flask and analyzed for ammonia-N, volatile fatty acids (VFA), and fatty acids (FA). Expect for CNO, the proportions of acetate, propionate, and acetate to propionate ratios were not affected (P &gt; 0.05) by EO addition. Addition of CWO, CNO, and TEO reduced total VFA concentrations (P &lt; 0.05) regardless of dose level. The ammonia-N concentration was greater in cultures incubated with EO regardless of dose level. Compared with the CON, the concentrations of C18:0 and trans C18:1 were reduced (P &lt; 0.05) with EO addition regardless of dose level. Compared with the CON, the concentration of linoleic acid was greater (P &lt; 0.05) when EO were added at 500&nbsp;mg/l. EO tested in this study had no effects on VFA profile but significantly reduced the formation of biohydrogenation products (C18:0 and trans C18:1).


2017 ◽  
Vol 48 (2) ◽  
pp. 63-69
Author(s):  
M. Joch ◽  
V. Kudrna ◽  
B. Hučko

AbstractThe objective of this study was to determine the effects of geraniol and camphene at three dosages (300, 600, and 900 mg l-1) on rumen microbial fermentation and methane emission in in vitro batch culture of rumen fluid supplied with a 60 : 40 forage : concentrate substrate (16.2% crude protein, 33.1% neutral detergent fibre). The ionophore antibiotic monensin (8 mg/l) was used as positive control. Compared to control, geraniol significantly (P < 0.05) reduced methane production with increasing doses, with reductions by 10.2, 66.9, and 97.9%. However, total volatile fatty acids (VFA) production and in vitro dry matter digestibility were also reduced (P < 0.05) by all doses of geraniol. Camphene demonstrated weak and unpromising effects on rumen fermentation. Camphene did not decrease (P > 0.05) methane production and slightly decreased (P < 0.05) VFA production. Due to the strong antimethanogenic effect of geraniol a careful selection of dose and combination with other antimethanogenic compounds may be effective in mitigating methane emission from ruminants. However, if a reduction in total VFA production and dry matter digestibility persisted in vivo, geraniol would have a negative effect on animal productivity.


Sign in / Sign up

Export Citation Format

Share Document