scholarly journals Fabrication of low-cost SiC foams from sugar and recycled polymeric templates

Respuestas ◽  
2021 ◽  
Vol 26 (1) ◽  
Author(s):  
Mayra Bayona Becerra ◽  
Elcy Córdoba Tuta ◽  
Viviana Güiza Argüello

Macroporous ceramic foams are used in different fields due to their unique properties, which include: low density, low thermal conductivity, high permeability, high temperature stability and high resistance to chemical attack. Highly porous silicon carbide (SiC) foams are materials of great interest for absorption, catalytic support, and thermal insulation applications, among others, due to their chemical resistance, large surface area, low flow resistance, low pressure drop, as well as high resistance to temperature and corrosion. In this work, highly porous, SiC foams were fabricated via template replica, using recycled polymeric foams as sacrificial templates. A sucrose-based resin containing silica powder was used as a foam precursor. Polymeric templates were impregnated, followed by thermal treatment at 1500 °C under inert atmosphere. The effect of C/SiO2 mass ratio (1.0-1.75) in the precursor and the use of alumina (0.5 - 2.5 %wt/v) as a sintering additive were evaluated in terms of the morphology of the fabricated foams, as well as SiC yield.

2006 ◽  
Vol 317-318 ◽  
pp. 501-504 ◽  
Author(s):  
Mineaki Matsumoto ◽  
Norio Yamaguchi ◽  
Hideaki Matsubara

Effect of La2O3 addition on thermal conductivity and high temperature stability of YSZ coating produced by EB-PVD was investigated. La2O3 was selected as an additive because it had a significant effect on suppressing densification of YSZ. The developed coating showed extremely low thermal conductivity as well as high resistance to sintering. Microstructural observation revealed that the coating had fine feather-like subcolumns and nanopores, which contributed to limit thermal transport. These nanostructures were thought to be formed by suppressing densification during deposition.


2018 ◽  
Vol 5 (12) ◽  
pp. 181091 ◽  
Author(s):  
Qingwei Xu ◽  
Kaili Xu ◽  
Xiwen Yao ◽  
Jishuo Li ◽  
Li Li

Sand casting, currently the most popular approach to the casting production, has wide adaptability and low cost. The thermal decomposition characteristics of foundry sand for cast iron were determined for the first time in this study. Thermogravimetry was monitored by simultaneous thermal analyser to find that there was no obvious oxidation or combustion reaction in the foundry sand; the thermal decomposition degree increased as the heating rate increased. There was an obvious endothermic peak at about 846 K due to the transition of quartz from β to α phase. A novel technique was established to calculate the starting temperature of volatile emission in determining the volatile release parameter of foundry sand for cast iron. Foundry sand does not readily evaporate because its volatile content is only about 2.68 wt% and its main components have high-temperature stability. The thermal decomposition kinetics parameters of foundry sand, namely activation energy and pre-exponential factor, were obtained under kinetics theory. The activation energy of foundry sand for cast iron was small, mainly due to the wide temperature range of thermal decomposition in the foundry sand.


Membranes ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 105 ◽  
Author(s):  
Amanmyrat Abdullayev ◽  
Maged Bekheet ◽  
Dorian Hanaor ◽  
Aleksander Gurlo

In water treatment applications, the use of ceramic membranes is associated with numerous advantages relative to polymer-based filtration systems. High-temperature stability, fouling resistance, and low maintenance requirements contribute to lower lifecycle costs in such systems. However, the high production costs of most commercially available ceramic membranes, stemming from raw materials and processing, are uneconomical for such systems in most water treatment applications. For this reason, there is a growing demand for new ceramic membranes based on low-cost raw materials and processes. The use of unrefined mineral feedstocks, clays, cement, sands, and ash as the basis for the fabrication of ceramic membranes offers a promising pathway towards the obtainment of effective filtration systems that can be economically implemented in large volumes. The design of effective ceramic filtration membranes based on low-cost raw materials and energy-efficient processes requires a balance of pore structure, mass flow, and robustness, all of which are highly dependent on the composition of materials used, the inclusion of various pore-forming and binding additives, and the thermal treatments to which membranes are subjected. In this review, we present recent developments in materials and processes for the fabrication of low-cost membranes from unrefined raw materials, including clays, zeolites, apatite, waste products, including fly ash and rice husk ash, and cement. We examine multiple aspects of materials design and address the challenges relating to their further development.


2020 ◽  
Vol 10 (15) ◽  
pp. 5338
Author(s):  
Yesheng Lu ◽  
Junning Cui ◽  
Jiubin Tan ◽  
Xingyuan Bian ◽  
Yamin Zhao

The Demand for circulating cooling water (CCW) with high temperature stability and a quick response to temperature control is essential for precision engineering, so a dynamic thermal filtering method is proposed in this paper. Some CCW is bypassed, blocked, and used as a thermal capacity medium, and the temperature fluctuation of CCW is significantly reduced by heat exchanging with the medium. The temperature of the medium dynamically follows the set value of the CCW temperature by real time updating, and so realizes a quick CCW temperature control response. The attenuation ratio of temperature fluctuation was derived, theoretically validating the effectiveness of the method. The experimental results indicate that a CCW temperature fluctuation attenuation ratio of tens of dB (−3.47 dB, −6.91 dB, −10.97 dB and −15.28 dB corresponding to temperature fluctuation frequencies of 0.01 Hz, 0.025 Hz, 0.053 Hz and 0.105 Hz, respectively) is achieved by the proposed method. The updating time of thermal capacity medium is 82 s, which means that the temperature fluctuation attenuation remains functionally valid when the set value of CCW changes. The proposed method is low cost in operation and provides an effective approach to satisfy the challenging demand for CCW with high stability and a good dynamic temperature control performance.


Alloy Digest ◽  
1989 ◽  
Vol 38 (1) ◽  

Abstract UNS NO6455 is a nickel-chromium-molybdenum alloy with outstanding high-temperature stability as shown by high ductility and corrosion resistance even after long-time aging in the range 1200-1900 F. The alloy also has excellent resistance to stress-corrosion cracking and to oxidizing atmospheres up to 1900 F. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Ni-367. Producer or source: Nickel and nickel alloy producers.


Alloy Digest ◽  
1987 ◽  
Vol 36 (7) ◽  

Abstract UNS No. R54620 is an alpha-beta titanium alloy. It has an excellent combination of tensile strength, creep strength, toughness and high-temperature stability that makes it suitable for service to 1050 F. It is recommended for use where high strength is required. It has outstanding advantages for long-time use at temperatures to 800 F. This datasheet provides information on composition, physical properties, elasticity, tensile properties, and bend strength as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ti-86. Producer or source: Titanium alloy mills.


The temperature factor is one of the limiting factors for obtaining high yields of crops, so one of the main tasks of selection is to search for temperature-resistant genotypes and to create on their basis the banks of crops with high temperature stability. The first step to solving this problem is to conduct a rapid assessment of the temperature plasticity of large populations and to isolate breeding-valuable genotypes from them. There are numerous methods that allow, in the short term with minimal technical and material costs, to carry out an initial assessment of a large number of genotypes at sporophytic level and differentiate them by resistance to the temperature factor. These methods include the method of estimating pollen populations. These studies have repeatedly been conducted on many cultures, their correctness is due to the expression of a large part of the plant genome, both at the diploid and haploid levels of development and demonstrated by many studies in this direction. The aim of our study was to study the stability of gametophyte and sporophyte of collecting varieties and varieties of winter rape to elevated temperatures, to study the correlation between the heat resistance of sporophyte and gametophyte.


2021 ◽  
Vol 10 (4) ◽  
pp. 675-703
Author(s):  
Dongxu Li ◽  
Xiaojun Zeng ◽  
Zhipeng Li ◽  
Zong-Yang Shen ◽  
Hua Hao ◽  
...  

AbstractDielectric ceramic capacitors, with the advantages of high power density, fast charge-discharge capability, excellent fatigue endurance, and good high temperature stability, have been acknowledged to be promising candidates for solid-state pulse power systems. This review investigates the energy storage performances of linear dielectric, relaxor ferroelectric, and antiferroelectric from the viewpoint of chemical modification, macro/microstructural design, and electrical property optimization. Research progress of ceramic bulks and films for Pb-based and/or Pb-free systems is summarized. Finally, we propose the perspectives on the development of energy storage ceramics for pulse power capacitors in the future.


Sign in / Sign up

Export Citation Format

Share Document