scholarly journals Application of Ecodrainage System in Reducing the Potential for Flooding in the District of Sampang

2017 ◽  
Vol 1 (2) ◽  
pp. 63-73
Author(s):  
Fauzan Andikha ◽  
Adhi Yuniarto

Kamoning River watershed is one of the watersheds in Sampang. Sampang City experienced flooding almost every year caused by the overflow of the River Kamoning. One of the causes of flooding in that city is the high rainfall and a lack of rainwater catchment areas in the upper and middle Kamoning River watershed. To overcome these problems, it is necessary to use a system of flood discharge reduction ecodrainage in the upstream and in the middle of Kamoning River watershed. This study used two scenarios of ecodrainage system: first is to change the land use in combination with the creation of retention ponds, the second scenario is to change the land use in combination with the creation of infiltration wells. From the analysis of large unknown, designed-flood discharge of 50 year-return period of Kamoning River basin is 289.361 m3/ sec. By using the first scenario, the designed-flood discharge can be reduced by 199.59 m3/s or 31.02%, while large designed-flood discharge can be reduced by 205.20 m3/s or 29.08% using second scenario. Efforts to reduce the discharge flood in Sampang can be effectively done by using the scenario 1.

BANGUNAN ◽  
2020 ◽  
Vol 25 (2) ◽  
pp. 1
Author(s):  
Gilang Id'fi

Abstrak:Permasalahan banjir seringkali melanda wilayah DAS Kali Ngotok setiap tahun. Masalah banjir pada umumnya disebabkan oleh perubahan tata guna lahan dan penurunan fungsi sungai yang ada di wilayah DAS Kali Ngotok serta sering terjadinya back water dari sungai-sungai yang bermuara di Kali Brantas pada saat mengalami debit maksimal. Untuk itu studi perbandingan debit puncak banjir perlu dilakukan karena belum adanya penelitian mengenai pengendalian banjir. Sehingga dilakukan penelitian mengenai analisis model hidrograf satuan sintetik. Metode hidrograf satuan sintetik yang digunakan adalah SCS, Snyder, dan Nakayasu. Data hujan yang digunakan adalah data hujan tahun 1998-2016 dari 14 stasiun hujan di wilayah DAS Kali Ngotok. Metode poligon Thiessen digunakan untuk mengetahui besaran hujan yang tersebar di wilayah DAS Kali Ngotok. Besaran hujan rata-rata yang turun di DAS Kali Ngotok dalam kurun waktu 1998-2016 sebesar 97.05 mm. Pada tahap pemodelan, pembagian sub catchment DAS dilakukan dengan membagi menjadi 5 sub DAS. Hasil pemodelan dengan metode SCS, Snyder, dan Nakayasu menunjukkan besaran debit untuk kala ulang 2 tahun, 5 tahun, 10 tahun, 20 tahun, 25 tahun, 50 tahun, 100 tahun, dan 200 tahun yang bervariasi. Data AWLR yang mendekati hasil pemodelan adalah data tahun 2014. Hasil kalibrasi hidrograf untuk metode SCS dengan kala ulang 25 tahun sebesar 0.88, untuk metode Snyder dengan kala ulang 25 tahun sebesar 0.74, dan untuk metode Nakayasu dengan kala ulang 25 tahun sebesar 0.43. Dengan demikian model hidrograf SCS dengan kala ulang 25 tahun mendekati dengan model hidrograf lapangan berdasarkan data AWLR yang ada serta sesuai dengan hasil pengamatan pada saat survey penduduk.Kata-kata kunci: DAS, Kali Ngotok, SCS, Snyder, NakayasuAbstract: Flood problems often hit the Ngotok River watershed every year. The problem of flooding is generally caused by changes in land use and a decrease in river functions in the Ngotok River watershed area as well as frequent back water from rivers which empties into Brantas River when experiencing maximum discharge. For that reason a comparative study of peak flood discharge needs to be done because there is no research on flood control. So that research is conducted on the analysis of synthetic unit hydrograph models. The synthetic unit hydrograph method used is SCS, Snyder, and Nakayasu. Rainfall data used is data from 1998-2016 from 14 rain stations in the Ngotok River watershed. The Thiessen polygon method is used to determine the amount of rain scattered in the Ngotok River watershed. The average rainfall in the Ngotok River watershed in the period 1998-2016 was 97.05 mm. In the modeling phase, the sub catchment division of the watershed is carried out by dividing it into 5 sub catchments. The modeling results using the SCS, Snyder, and Nakayasu methods show the amount of discharge for the return period of 2 years, 5 years, 10 years, 20 years, 25 years, 50 years, 100 years, and 200 years which varies. AWLR data approaching the modeling results are 2014 data. The hydrograph calibration results for the SCS method with a 25 year return period are 0.88, for the Snyder method with a 25 year return period of 0.74, and for the Nakayasu method with a 25 year return period of 0.43. Thus the SCS hydrograph model with a 25 year return period approaches the field hydrograph model based on the AWLR data that exists and is in accordance with the observations during the population survey.Keywords: Watershed, Ngotok River, SCS, Snyder, Nakayasu


2021 ◽  
Vol 331 ◽  
pp. 08006
Author(s):  
Arniza Fitri ◽  
Muhammad Shubhi Nurul Hadie ◽  
Adelia Agustina ◽  
Dian Pratiwi ◽  
Susarman ◽  
...  

Cimadur river basin is one of the most important catchment areas in Lebak District, Banten Province. For the past few years, the catchment has experienced floods during the rainy season. The big issue of flooding has been recorded recently in December 2019 which has caused damage and negative impacts to the local people and surrounding community. This study aims to analyze the possibility of flood peak discharges in the catchment area of the Cimadur river. The flood discharges are calculated for 2, 5, 10, 25, 50, and 100 years return period based on the daily rainfall data from the year 2011 to 2020. The rainfall and land use data are obtained from PT Saeba Consultant. In this study, the hydrological analyses are including 1) analyses of average annual rainfall using the Thiessen method; 2) analyses of rainfall distribution and estimation of design rainfall by considering three methods involving: Log-Normal, Log Pearson Type III, and Gumbel Type 1; and 3) analyses of flood discharges by adopting Nakayasu Synthetic Hydrograph Unit (SHU). The rainfall distribution analyses show that the Log Pearson Type III provided the best fit. Based on the flood peak discharges analyses, the results show that the flood discharges for the 5, 10, 25, and 50 years return period in the Cimadur river basin are 470.71 m3/s, 560.16 m3/s, 698 m3/s, and 820.4 m3/s, respectively.


2021 ◽  
Vol 945 (1) ◽  
pp. 012046
Author(s):  
Rizka Arbaningrum ◽  
Marelianda Al Dianty ◽  
Frederik Josef Putuhena ◽  
Rifki Priyambodo ◽  
Budianto Ontowirjo

Abstract Situ Ciledug is an artificial reservoir located at Tangerang Selatan, Indonesia. In 1950 known as one of the largest lakes with total area of 32.806 hectares. As time goes by, due to the construction of housing and land use around the area, the catcahment area was reduced about 19.3 hectares in 2013 and by the end of 2020 the surface area was become 16.2 hectares. Urbanization is the main factor that makes the area of Situ Ciledug’s narrower. The second impact was flooding, as a result, the flood inundates the cities around the reservoir. This study aims to increase the storage capacities by normalizing the reservoir using SWMM 5.1 software. Hydrological analysis was carried out in the first stage to find the maximum rainfall using a 100-year return period. Then result intensity of rainfall used to analyze the hyetograph as input for rainfall data in SWMM 5.1. The modeling uses a maximum of rainfall about 107 mm with a reservoir depth of 1.3 meters. The large inflow that enters the reservoir is 87.504 m3/second aand the volume is 30.145 m3/second. Therefore, it is necessary to normalize the reservoir by increasing the depth of the reservoir by 0.7 meters. Normalization is carried out to accommodate flood discharge as a solution to flood mitigation due to the overflow.


2021 ◽  
Vol 1 (2) ◽  
pp. 83
Author(s):  
Sri Rahmawati ◽  
Anita Rahmawati ◽  
Azizah Rachmawati

Jombang sub-district is the most densely populated sub-district because it is located in the middle of Jombang district and is also the center of government. Because it is a densely populated area, resulting in many changes in land use, green land for absorption has turned into a watertight area. The results of the analysis from this aspect indicate that several channels in Jombang District are not able to accommodate the design flood discharge. The calculation of the height of rain design in this study used the Log Person type III method with a return period of 5 years, which resulted in the design rainfall of 157 mm. The results of the analysis show that there are 8 channels out of 74 that are unable to accommodate the design flood discharge. After planning the infiltration wells, a different number was obtained for each road. For Jalan Sentot Prawirodirjo, there are 8 infiltration wells with a reduction power of 51.62%.


2020 ◽  
Author(s):  
Chen Kuan Ling ◽  
Chang Hsueh Sheng ◽  
Cheng Hao Teng

<p>In recent years, the risk of flooding disasters caused by climate change has increased, and a new concept of runoff sharing has been proposed in China. It is an operation method based on the area of ​​the catchment from the perspective of water conservancy. However, the basin area is also a spatial unit of human economic activity. Social and economic development and the distribution of runoff responsibilities clearly show a mutual measurement relationship, and the land has a certain social responsibility to handle its own runoff. How can it be distributed fairly and efficiently? The issue of responsibility for runoff sharing has become an important issue for joint initiatives in the field of soil and water. </p><p> </p><p>In the case of considering the watershed as a spatial scope, in addition to considering its own hydrological properties, there are also socioeconomic development issues that should be clarified and discussed step by step. Therefore, this study attempts to use the three-stage data envelopment analysis (DEA) method to consider hydrology The concept of interaction with the socio-economic environment takes into account the impact of exogenous factors on the allocation of runoff responsibility, and evaluates the efficiency of runoff responsibility. In view of this, from the standpoint of the government and residents sharing the runoff, this study effectively combines the different types of data of the social, economic, and ecological environments in the catchment areas to carry out a comprehensive assessment, and weighs out the optimal distribution efficiency of the overall river basin. </p><p> </p><p>This study is divided into three parts to clarify the distribution of runoff responsibilities, which are divided into: (1) Establishing an assessment framework for the distribution of river basin runoff responsibilities: Based on the analysis of the spatial unit of the catchment area, an attempt is made to integrate different regional development conditions, which can be summarized Appropriate and appropriate distribution methods; (2) Weighing the fairness and efficiency of the distribution of runoff responsibilities in the spatial unit of the watershed: Point out the current runoff responsibility distribution model and characteristics of the catchment area; (3) Attempt to develop the principles for the use of land use planning, Apply the concept of runoff responsibility to land use planning. </p><p> </p><p>Based on the results of this study, a more fair way to distribute runoff responsibilities is proposed, and a new perspective on social natural equality from the river basin scale is clarified. The key factors that affect the distribution of runoff responsibilities are clear. Efficiently undertake total runoff and provide policy planning advice. Try to discuss the issue of runoff responsibility allocation from the field of urban planning, provide river basin runoff responsibility with a planning vision, strengthen the spatial thinking of water and soil dialogue, and look forward to providing a new model of river basin governance in extreme climates. </p>


2021 ◽  
Vol 34 (02) ◽  
pp. 973-992
Author(s):  
Tatiana A. Trifonova ◽  
Natalia V. Mishchenko ◽  
Pavel S. Shutov

The article addresses the dynamics of biological processes in various landscapes within a holistic natural geosystem—a catchment area. The Klyazma river (the fourth order tributary to the Volga) was selected as the object of study. The natural complex of the Klyazma river basin is a combination of different landscapes, each marked by a diverse composition of geomorphological and soil-vegetation structures. The study is based on remote sensing data and the Trends.Earth Land Degradation Monitoring Project (Land Cover Dataset, European Space Agency 2015, 300 m spatial resolution) implemented using the open-source Quantum GIS 2.18. Four landscape provinces and eight site were identified in the studied catchment area according to the geomorphological structure and the soil and vegetation cover. The ecosystem parameters Gross Primary Productivity, Net Primary Productivity, and Ecosystem Respiration were measured in the identified sites. In different landscapes the biological processes, characterizing the organic matter dynamics in the form of plant production and organic matter accumulation, differ in both rate and intensity, and variously respond to the changes in climate parameters and land use. The river basin, as a holistic ecosystem, showed sufficient stability of the dynamic processes. This suggests that holistic natural ecosystems, such as catchment areas, have internal compensatory mechanisms that maintain the development stability over long period of time, while irrational land use remains the main damaging factor.


2020 ◽  
Vol 331 ◽  
pp. 04001
Author(s):  
Yassir Arafat ◽  
IG Tunas ◽  
Tuty Amaliah ◽  
Aswar Amiruddin

Hydrograph is a way of predicting the amount of flood discharge plans in a watershed. Each watershed has different drainage characteristics due to the topographic shape of the watershed, land use, river typology (length, number, and slope), height and duration of rainfall. This research was conducted in Palu River Basin, with a basin area of 3. 060,388 km2, mismatch analysis of watershed and synthetic unit hydrograph, rain and discharge analysis, hydrograph discharge design analysis using optimal synthetic unit hydrograph parameter model. From the results of research calculation of Synthetic Unit Hydrograph Nakayasu Method has big enough key compared with another method. By using hydrograph model of flood plan for Palu River Watershed with the approach of Synthetic Unit Hydrograph Nakayasu, hydrograph calculation of flood in Palu river watershed, obtained alpha coefficient equal to 0,651 and Tr coefficient 0,3 with cash value model 71,491%. with cash value model 71,491%.


2015 ◽  
Vol 747 ◽  
pp. 298-301
Author(s):  
Sri Harini

The Upper Brantas river basin (DAS Brantas Hulu) has natural resources such as forests, soil and water potential. If well managed will provide great benefits and can improve the welfare of society. Changes in land use are not well planned and the impact of human activities that are not true cause a reduction in water catchment areas as a causing of erosion in the Upper Brantas river basin. This study aims to gain an overview of land use, land capability and potential erosion in the Upper Brantas river basin as a basis for policy making in environmentally sound watershed management.


Sign in / Sign up

Export Citation Format

Share Document