scholarly journals Specialization of the cloacal microbiome relative to gut, oviduct, and feces of an oviparous lizard

Author(s):  
Marie Bunker ◽  
Mark Martin ◽  
Stacey Weiss

Microbial diversity and community function are related, and both can be highly specialized in different regions of the gut. The cloacal microbiome of Sceloporus virgatus lizards has low diversity, suggesting a specialized function, and is known to transfer antifungal microbes to eggshells during oviposition. We hypothesize that the cloacal microbiome is distinct from other parts of the digestive and reproductive systems. Here, we compare the microbiome of tissue samples from the cloaca, lower intestine, upper intestine, and oviduct. We further assessed whether common methods of microbial sampling – cloacal swabs and feces – provide accurate representations of these tissues, and whether feces might “seed” the cloacal microbiome. We found that the upper intestine and oviduct had unique microbial communities, while the lower intestine and cloaca had similar communities with lower diversity indicative of regional specialization. The cloacal community, in particular, showed extreme specialization averaging 99% Proteobacteria (Phylum) and 83% Enterobacteriacaea (Family). Cloacal swabs recovered communities similar to that of lower intestine and cloacal tissues, but fecal samples had much higher diversity and a distinct composition (62% Firmicutes and 39% Lachnospiraceae) relative to all gut regions. This result serves as a caution against the frequent assumption that fecal samples provide an accurate representation of the gut. Finally, we found that defecation did not alter the cloacal microbiome, suggesting that community is robust to perturbations from transient microbiota.

Author(s):  
Marie Bunker ◽  
Mark Martin ◽  
Stacey Weiss

Microbial diversity and community function are related, and can be highly specialized in different gut regions. The cloacal microbiome of Sceloporus virgatus provides antifungal protection to eggshells during oviposition – a specialized function that suggests a specialized microbial composition. Here, we describe the S. virgatus cloacal microbiome from tissue and swab samples, and compare it to tissue samples from the gastrointestinal (GI) tract and oviduct, adding to the growing body of evidence of microbiome localization in reptiles. We further assessed whether common methods of microbial sampling – cloacal swabs and feces – provide accurate representations of these microbial communities and whether feces might “seed” the cloacal microbiome or impact the accuracy of cloacal swab sampling. We found that different regions of the gut had unique microbial community structures. The cloacal community, in particular, showed extreme specialization averaging 99% Proteobacteria (Phylum) and 83% Enterobacteriacaea (Family). Cloacal swabs recovered communities similar to that of lower intestine and cloacal tissues, but fecal samples had much higher diversity and a distinct composition (62% Firmicutes and 39% Lachnospiraceae) relative to all gut regions. Finally, we found that feces and cloacal swabs recover different communities, but cloacal swabs may be contaminated with fecal matter if taken immediately after defecation. These results serve as a caution against the assumption that fecal samples provide an accurate representation of the gut, and that although cloacal swabs can reflect a portion of the lower GI tract microbiome, they may also result in a mixed community of gut and fecal microbes.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1718
Author(s):  
Kelang Kang ◽  
Yan Hu ◽  
Shu Wu ◽  
Shourong Shi

When conducting metagenomic analysis on gut microbiomes, there is no general consensus concerning the mode of sampling: non-contact (feces), noninvasive (rectal swabs), or cecal. This study aimed to determine the feasibility and comparative merits and disadvantages of using fecal samples or rectal swabs as a proxy for the cecal microbiome. Using broiler as a model, gut microbiomes were obtained from cecal, cloacal, and fecal samples and were characterized according to an analysis of the microbial community, function, and resistome. Cecal samples had higher microbial diversity than feces, while the cecum and cloaca exhibited higher levels of microbial community structure similarity compared with fecal samples. Cecal microbiota possessed higher levels of DNA replicative viability than feces, while fecal microbiota were correlated with increased metabolic activity. When feces were excreted, the abundance of antibiotic resistance genes like tet and ErmG decreased, but some antibiotic genes became more prevalent, such as fexA, tetL, and vatE. Interestingly, Lactobacillus was a dominant bacterial genus in feces that led to differences in microbial community structure, metabolism, and resistome. In conclusion, fecal microbiota have limited potential as a proxy in chicken gut microbial community studies. Thus, feces should be used with caution for characterizing gut microbiomes by metagenomic analysis.


2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
J. A. Fernández-Silva ◽  
A. Abdulmawjood ◽  
M. Bülte

The objective of this study was the serological, bacteriological and molecular diagnosis, as well as the molecular characterization ofMycobacterium aviumsubsp.paratuberculosis(Map) in adult cows of five Colombian dairy herds. Serum samples were tested by an indirect absorbed enzyme–linked immunosorbent assay (ELISA-C). All fecal samples were tested by pooled culture. After that, fecal samples of Map positive pools were tested individually by culture and polymerase chain reaction (PCR). In one herd, slurry and tissue samples from one animal were also taken and tested by PCR and culture. Map isolates were analyzed by the Multilocus Short Sequence Repeat (MLSSR) and the Mycobacterial Interspersed Repetitive Units-Variable Number of Tandem Repeats (MIRU-VNTR) methods. ELISA produced positive results in 1.8% (6/329) of the animals and 40% (2/5) of the herds. Four fecal, two tissue, and two slurry samples from a herd were Map positive by culture and PCR. MLSSR and MIRU-VNTR revealed two different strain profiles among eight Map isolates recovered. This study reports the first molecular characterization of Map in one dairy herd in Colombia, the limitations for individual diagnosis of subclinical Map infections in cattle, and the usefulness of pooled fecal samples and environmental sampling for Map diagnosis.


2002 ◽  
Vol 68 (5) ◽  
pp. 2269-2277 ◽  
Author(s):  
Luke J. Grauke ◽  
Indira T. Kudva ◽  
Jang Won Yoon ◽  
Carl W. Hunt ◽  
Christopher J. Williams ◽  
...  

ABSTRACT Experimentally inoculated sheep and cattle were used as models of natural ruminant infection to investigate the pattern of Escherichia coli O157:H7 shedding and gastrointestinal tract (GIT) location. Eighteen forage-fed cattle were orally inoculated with E. coli O157:H7, and fecal samples were cultured for the bacteria. Three distinct patterns of shedding were observed: 1 month, 1 week, and 2 months or more. Similar patterns were confirmed among 29 forage-fed sheep and four cannulated steers. To identify the GIT location of E. coli O157:H7, sheep were sacrificed at weekly intervals postinoculation and tissue and digesta cultures were taken from the rumen, abomasum, duodenum, lower ileum, cecum, ascending colon, descending colon, and rectum. E. coli O157:H7 was most prevalent in the lower GIT digesta, specifically the cecum, colon, and feces. The bacteria were only inconsistently cultured from tissue samples and only during the first week postinoculation. These results were supported in studies of four Angus steers with cannulae inserted into both the rumen and duodenum. After the steers were inoculated, ruminal, duodenal, and fecal samples were cultured periodically over the course of the infection. The predominant location of E. coli O157:H7 persistence was the lower GIT. E. coli O157:H7 was rarely cultured from the rumen or duodenum after the first week postinoculation, and this did not predict if animals went on to shed the bacteria for 1 week or 1 month. These findings suggest the colon as the site for E. coli O157:H7 persistence and proliferation in mature ruminant animals.


Author(s):  
Fetheddine REZIG ◽  
Riad BOUZID ◽  
Kheyreddine ATIA ◽  
Leila AOUN

Paratuberculosis (PTCB) or Johne's disease (JD) caused by a slow growing acid fast bacillus Mycobacterium avium subspecies paratuberculosis (MAP), is an infectious disease of many species including humans. The disease is responsible for important economic losses to livestock industry worldwide. Although the disease is widespread, it had not been studied in Algerian sheep. In this study we inspected the presence of the infection in sheep (aged 2 years old or older) using histopathology and IS900-PCR techniques in randomly 378 tissues (ileum, ileoceacale valve and lymph nodes) and fecal samples. Gross lesions were detected in 16 (4%) of samples. Histopathological examination revealed the presence of pathognomonic lesions of JD in 61 (14%) animals. Ziehl-Neelsen (ZN) staining of tissue samples was positive in 28 (7%) cases. MAP-DNA was detected in 34 (9%) fecal samples. 14 (4%) animals were tested positive for antibodies against MAP. This study showed that not only ovine paratuberculosis present in Algeria but infected animals are excreting the bacteria in feces. This could be a significant threat for other ruminants and humans. Other studies should be carried out in order to better understand the prevalence and the molecular epidemiology of MAP in the country.


Author(s):  
Jerrold L. Abraham

Inorganic particulate material of diverse types is present in the ambient and occupational environment, and exposure to such materials is a well recognized cause of some lung disease. To investigate the interaction of inhaled inorganic particulates with the lung it is necessary to obtain quantitative information on the particulate burden of lung tissue in a wide variety of situations. The vast majority of diagnostic and experimental tissue samples (biopsies and autopsies) are fixed with formaldehyde solutions, dehydrated with organic solvents and embedded in paraffin wax. Over the past 16 years, I have attempted to obtain maximal analytical use of such tissue with minimal preparative steps. Unique diagnostic and research data result from both qualitative and quantitative analyses of sections. Most of the data has been related to inhaled inorganic particulates in lungs, but the basic methods are applicable to any tissues. The preparations are primarily designed for SEM use, but they are stable for storage and transport to other laboratories and several other instruments (e.g., for SIMS techniques).


Author(s):  
MB. Tank Buschmann

Development of oligodendrocytes in rat corpus callosum was described as a sequential change in cytoplasmic density which progressed from light to medium to dark (1). In rat optic nerve, changes in cytoplasmic density were not observed, but significant changes in morphology occurred just prior to and during myelination (2). In our study, the ultrastructural development of oligodendrocytes was studied in newborn, 5-, 10-, 15-, 20-day and adult frontal cortex of the golden hamster (Mesocricetus auratus).Young and adult hamster brains were perfused with paraformaldehyde-glutaraldehyde in sodium cacodylate buffer at pH 7.3 according to the method of Peters (3). Tissue samples of layer V of the frontal cortex were post-fixed in 2% osmium tetroxide, dehydrated in acetone and embedded in Epon-Araldite resin.


Author(s):  
J.N. Turner ◽  
M. Siemens ◽  
D. Szarowski ◽  
D.N. Collins

A classic preparation of central nervous system tissue (CNS) is the Golgi procedure popularized by Cajal. The method is partially specific as only a few cells are impregnated with silver chromate usualy after osmium post fixation. Samples are observable by light (LM) or electron microscopy (EM). However, the impregnation is often so dense that structures are masked in EM, and the osmium background may be undesirable in LM. Gold toning is used for a subtle but high contrast EM preparation, and osmium can be omitted for LM. We are investigating these preparations as part of a study to develop correlative LM and EM (particularly HVEM) methodologies in neurobiology. Confocal light microscopy is particularly useful as the impregnated cells have extensive three-dimensional structure in tissue samples from one to several hundred micrometers thick. Boyde has observed similar preparations in the tandem scanning reflected light microscope (TSRLM).


Author(s):  
P.W. Coates ◽  
E.A. Ashby ◽  
L. Krulich ◽  
A. Dhariwal ◽  
S. McCann

The morphologic effects on somatotrophs of crude sheep hypothalamic extract prepared from stalk-median eminence were studied by electron microscopy in conjunction with concurrently run bioassays performed on the same tissue samples taken from young adult male Sherman rats.Groups were divided into uninjected controls and injected experimentals sacrificed at 5', 15', and 30' after injection. Half of each anterior pituitary was prepared for electron microscopic investigation, the other half for bioassay. Fixation using collidine buffered osmium tetroxide was followed by dehydration and embedment in Maraglas. Uranyl acetate and lead citrate were used as stains. Thin sections were examined in a Philips EM 200.Somatotrophs from uninjected controls appeared as described in the literature (Fig. 1). In addition to other components, these cells contained moderate numbers of spherical, electron-dense, membrane-bound granules approximately 350 millicrons in diameter.


Author(s):  
T. L. Benning ◽  
P. Ingram ◽  
J. D. Shelburne

Two benzofuran derivatives, chlorpromazine and amiodarone, are known to produce inclusion bodies in human tissues. Prolonged high dose chlorpromazine therapy causes hyperpigmentation of the skin with electron-dense inclusion bodies present in dermal histiocytes and endothelial cells ultrastructurally. The nature of the deposits is not known although a drug-melanin complex has been hypothesized. Amiodarone may also cause cutaneous hyperpigmentation and lamellar lysosomal inclusion bodies have been demonstrated within the cells of multiple organ systems. These lamellar bodies are believed to be the product of an amiodarone-induced phospholipid storage disorder. We performed transmission electron microscopy (TEM) and energy dispersive x-ray microanalysis (EDXA) on tissue samples from patients treated with these drugs, attempting to detect the sulfur atom of chlorpromazine and the iodine atom of amiodarone within their respective inclusion bodies.A skin biopsy from a patient with hyperpigmentation due to prolonged chlorpromazine therapy was fixed in 4% glutaraldehyde and processed without osmium tetroxide or en bloc uranyl acetate for Epon embedding.


Sign in / Sign up

Export Citation Format

Share Document